首页> 外文期刊>Australian journal of water resources >On the physical modelling of large vortex drop structures in municipal sewerage systems
【24h】

On the physical modelling of large vortex drop structures in municipal sewerage systems

机译:城市污水系统中大涡旋降结构的物理模型研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Classically, dimensional analysis is used to establish the fundamental scaling laws to predict prototype behaviour from observed model results. However, the same dimensional analysis demonstrates that it is not possible to avoid scale effects if the prototype fluid - normally water - is used in the model studies. Flow through hydraulic structures is typically gravity-driven, and equality of Froude Numbers at homologous points in model and prototype leads to the determination of fundamental scaling laws. However, it is well known that, as a consequence, homologous values of other non-dimensional parameters, such as Reynolds Number and Weber Number, are not equivalent and this leads to scale effects due to the imperfect replication in the model of (for example) friction and surface tension effects. In such cases, it is necessary to use process functions to determine the magnitude of the scale effects and to inform the adjustment of measured flow properties in the model to reflect the true value of the flow properties in the prototype. The present paper extends the use of process functions to annular flows, such as those that occur in vortex drop structures and plunge pools. Within the vortex drop, it is shown that the process functions cannot be used to evaluate scale effects directly, but, instead, must be used in conjunction with the model data to develop an analytical model for the prediction of corresponding prototype behaviour. Within the plunge pool, it is hypothesised that the momentum flux at the exit of the vortex pipe must be correctly modelled to ensure the proper replication of flow conditions within the plunge pool. The techniques are developed, and their use illustrated through application to a large physical model study of a vortex drop and plunge pool in a municipal sewerage system. It is shown, further, that ignoring the insight gained from the developed process functions would lead to large errors in the prediction of prototype flow behaviour from measured model results.
机译:传统上,尺寸分析用于建立基本的比例定律,以根据观察到的模型结果预测原型行为。但是,同一维分析表明,如果在模型研究中使用原型流体(通常是水),则不可能避免水垢效应。通过水工结构的流量通常是重力驱动的,模型和原型中同源点处的弗洛德数相等,导致确定基本的比例定律。但是,众所周知,结果是其他无量纲参数(例如雷诺数和韦伯数)的同源值不相等,并且由于(例如, )摩擦和表面张力的影响。在这种情况下,必须使用过程函数来确定比例效应的大小,并告知模型中测得的流动特性的调整,以反映原型中流动特性的真实值。本文将过程函数的使用扩展到环形流,例如涡流降结构和跳入池中发生的那些。在涡流降内,表明过程函数不能直接用于评估尺度效应,而必须与模型数据结合使用,以开发用于预测相应原型行为的分析模型。假设在跳水池内,必须正确模拟在涡流管出口处的动量通量,以确保在跳水池内流动条件的正确复制。这些技术得到了发展,并通过应用于市政污水处理系统中的涡流下降和跳水池的大型物理模型研究来说明了它们的用途。进一步表明,忽略从已开发的过程功能中获得的见识会导致从测量的模型结果预测原型流动行为时出现较大的误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号