首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Multichannel Nonnegative Matrix Factorization in Convolutive Mixtures for Audio Source Separation
【24h】

Multichannel Nonnegative Matrix Factorization in Convolutive Mixtures for Audio Source Separation

机译:卷积混合中的多通道非负矩阵分解用于音频源分离

获取原文
获取原文并翻译 | 示例

摘要

We consider inference in a general data-driven object-based model of multichannel audio data, assumed generated as a possibly underdetermined convolutive mixture of source signals. We work in the short-time Fourier transform (STFT) domain, where convolution is routinely approximated as linear instantaneous mixing in each frequency band. Each source STFT is given a model inspired from nonnegative matrix factorization (NMF) with the Itakura-Saito divergence, which underlies a statistical model of superimposed Gaussian components. We address estimation of the mixing and source parameters using two methods. The first one consists of maximizing the exact joint likelihood of the multichannel data using an expectation-maximization (EM) algorithm. The second method consists of maximizing the sum of individual likelihoods of all channels using a multiplicative update algorithm inspired from NMF methodology. Our decomposition algorithms are applied to stereo audio source separation in various settings, covering blind and supervised separation, music and speech sources, synthetic instantaneous and convolutive mixtures, as well as professionally produced music recordings. Our EM method produces competitive results with respect to state-of-the-art as illustrated on two tasks from the international Signal Separation Evaluation Campaign (SiSEC 2008).
机译:我们在多声道音频数据的一般数据驱动的基于对象的模型中考虑推理,假设该模型是作为可能不确定的源信号的卷积混合而生成的。我们在短时傅立叶变换(STFT)域中工作,在该域中,卷积通常近似地视为每个频带中的线性瞬时混合。每个源STFT都有一个模型,该模型受Itakura-Saito发散的非负矩阵分解(NMF)启发,该模型作为叠加高斯分量的统计模型的基础。我们使用两种方法处理混合参数和源参数的估计。第一个包括使用期望最大化(EM)算法最大化多通道数据的精确联合似然性。第二种方法包括使用受NMF方法启发的乘性更新算法来最大化所有通道的单个似然之和。我们的分解算法适用于各种环境下的立体声音频源分离,包括盲目分离和监督分离,音乐和语音源,合成的瞬时和卷积混合音以及专业制作的音乐录音。正如国际信号分离评估运动(SiSEC 2008)的两项任务所示,我们的EM方法相对于最新技术具有竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号