首页> 外文期刊>The Astrophysical journal >MOLECULES AT HIGH REDSHIFT: THE EVOLUTION OF THE COOL PHASE OF PROTOGALACTIC DISKS
【24h】

MOLECULES AT HIGH REDSHIFT: THE EVOLUTION OF THE COOL PHASE OF PROTOGALACTIC DISKS

机译:高迁移率的分子:原乳状盘酷相的演变

获取原文
获取原文并翻译 | 示例
       

摘要

We study the formation of molecular hydrogen, after the epoch of reionization, in the context of canonical galaxy formation theory due to hierarchical clustering. There is an initial epoch of H_2 production in the gas phase through the H~- route that ends at a redshift of order unity. We assume that the fundamental units in the gas phase of protogalaxies during this epoch are similar to diffuse clouds found in our own Galaxy, and we restrict our attention to protogalactic disks, although some of our analysis applies to multiphase halo gas. Giant molecular clouds are not formed until lower redshifts. Star formation in the protogalactic disks can become self-regulated. The process responsible for the feedback is the heating of the gas by the internal stellar radiation field that can dominate the background radiation field at various epochs. If the gas is heated to above 2000-3000 K, the hydrogen molecules are collisionally dissociated, and we assume that in their absence the star formation process is strongly suppressed because of insufficient cooling. As we demonstrate by the analysis of phase diagrams, the H_2-induced cool phase disappears. A priori, the cool phase with molecular hydrogen cooling can only achieve temperatures ≥ 300 K. Consequently, it is possible to define a maximum star formation rate during this epoch. Plausible estimates give a rate of approx < 0.2-2 solar mass yr~(-1) for condensations corresponding to 1σ and 2σ initial density fluctuations. For more massive structures, this limit is relaxed and in agreement with observations of high-redshift galaxies. Therefore, the production of metals and dust proceeds slowly in this phase. This moderate epoch is terminated by a phase transition to a cold, dense, and warm neutral/ionized medium once the metals and dust have increased to a level Z ≈ 0.03-0.1 Z_☉. Then (1) atoms and molecules such as C, O, and CO become abundant and cool the gas to below 300 K; (2) the dust abundance has become sufficiently high to allow shielding of the molecular gas; and (3) molecular hydrogen formation can occur rapidly on grain surfaces. This phase transition occurs at a redshift of approximately 1.5, with a fiducial range of 1.2 ≤ z ≤ 2, and initiates the rapid formation of molecular species, giant molecular clouds, and stars. Consequently, the delayed initiation of the cold phase in the interstellar medium of protostellar disks at a metallicity of Z approx < 0.1 Z_☉ is a plausible physical reason why the formation phase of the stellar disks of the bulk of the galaxies occurs only at a redshift of order unity. The combination of feedback and a phase transition provides a natural resolution of the G-dwarf problem.
机译:在由于分层聚类的规范星系形成理论的背景下,我们在电离时代之后研究了分子氢的形成。通过H〜-路线在气相中产生H_2的初始时期,以阶次为单位的红移结束。我们假设,在这个时期,原星系气相的基本单位类似于在我们自己的银河系中发现的弥散云,我们将注意力集中在原银河系盘上,尽管我们的某些分析适用于多相卤代气。直到较低的红移才形成巨大的分子云。原银河系盘中的恒星形成可以自我调节。负责反馈的过程是内部恒星辐射场对气体的加热,该恒星能在各个时期主导背景辐射场。如果将气体加热到2000-3000 K以上,则氢分子会发生碰撞离解,并且我们假设在不存在氢的情况下,由于冷却不足,强烈抑制了恒星形成过程。正如我们通过相图分析所证明的那样,H_2诱导的冷相消失了。先验地,分子氢冷却的冷相只能达到≥300 K的温度。因此,可以在此时期定义最大的恒星形成速率。对于与1σ和2σ初始密度波动相对应的冷凝,合理的估计给出的比率约为<0.2-2太阳质量yr〜(-1)。对于更大的结构,此限制是放宽的,并且与高红移星系的观测结果一致。因此,在此阶段,金属和粉尘的产生缓慢进行。一旦金属和尘埃增加到Z≈0.03-0.1Z_☉的水平,这个适中的时期就终止于向冷,稠密和温暖的中性/电离介质的相变。然后(1)原子和分子(例如C,O和CO)变得丰富,并将气体冷却至300 K以下; (2)尘埃丰度已经足够高,可以屏蔽分子气体; (3)分子氢的形成可以在晶粒表面迅速发生。该相变以约1.5的红移发生,基准范围为1.2≤z≤2,并开始快速形成分子种类,巨大的分子云和恒星。因此,在金属星系Z大约<0.1Z_☉的情况下,原恒星盘星际介质中冷阶段的延迟启动是一个合理的物理原因,为什么大部分星系的恒星盘的形成阶段仅在红移时发生秩序统一。反馈和相变的结合提供了G矮问题的自然解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号