首页> 外文期刊>Acta astronautica >Hardware and GNC solutions for controlled spacecraft re-entry using aerodynamic drag
【24h】

Hardware and GNC solutions for controlled spacecraft re-entry using aerodynamic drag

机译:用于受控航天器重新进入的硬件和GNC解决方案使用空气动力学阻力

获取原文
获取原文并翻译 | 示例
       

摘要

Traditionally, controlled spacecraft re-entries have been conducted using propulsive de-orbit burns which are risky, expensive, and may not be possible for all vehicles. Recently, the miniaturization of technology has ushered in a new class of small satellites (such as CubeSats) that are too small to host thrusters but may require a controlled de-orbit if they contain materials capable of surviving re-entry. For all space vehicles requiring a controlled re-entry, the ability to harness the naturally occurring aerodynamic drag force for orbit control provides a cheaper and more reliable alternative to chemical propulsion.This paper discusses a comprehensive method for drag-controlled re-entry that is applicable to any vehicle capable of modulating its ballistic coefficient. First, a novel guidance generation algorithm efficient enough to run onboard a CubeSat outputs a desired ballistic coefficient profile and corresponding numerically propagated trajectory that if followed, will lead the spacecraft to a desired de-orbit location. This guidance generation algorithm is based on an analytical solution that provides convergence guarantees, ensures rapid performance, and facilitates a controllability analysis. Next, the guidance tracking algorithm utilizes an extended Kalman filter and GPS measurements to estimate the position and velocity of the satellite relative to the guidance. A full state feedback linear-quadratic-regulator (LQR) control strategy is then used to drive the relative position and velocity to zero using solely aerodynamic drag. This paper also discusses a novel retractable drag de-orbit device (D3) that can be attached to existing CubeSat structures and can easily be scaled up for larger satellites. The D3 provides passive three-axis attitude stabilization using aerodynamic and gravity gradient forces and can be repeatedly modulated to perform aerodynamically-based orbital maneuvering and controlled re-entry. The design of the planned 2U CubeSat to test the D3 and control algorithms in flight is also discussed.The re-entry point targeting algorithms were validated through extensive Monte Carlo simulations which included realistic GPS measurement errors and drag force uncertainties. The algorithms were able to guide the satellite to a desired de-orbit location with an average error below 25 km and in all cases, the targeting error was low enough for debris mitigation purposes. The accuracy and reliability of these algorithms coupled with the D3 device that has successfully undergone thermal vacuum, vibration, and fatigue testing provide a cheap, reliable, and comprehensive attitude, orbit, and de-orbit control solution that can be used on large and small space vehicles, possibly replacing conventional propulsion and attitude control systems and making space more accessible to everyone.
机译:传统上,使用的受控航天器重新参与进行了使用推进的去轨燃烧进行风险,昂贵,并且所有车辆可能都不可能。最近,技术的小型化已经迎来了一类新的小型卫星(如立方体),这对于举办推进器来说太小,但如果它们含有能够存活重新进入的材料,则可能需要受控的去轨道。对于需要受控重新进入的所有空间车辆,利用用于轨道控制的天然存在的空气动力牵引力的能力为化学推进提供了更便宜和更可靠的替代方案。本文讨论了拖累控制重新进入的综合方法适用于能够调制其弹道系数的任何车辆。首先,一种新的引导生成算法有效地运行船上的逐方输出所需的弹道系数轮廓和相应的数字传播的轨迹,如果遵循,将使航天器引导到所需的轨道位置。该引导生成算法基于提供收敛保证的分析解决方案,确保快速性能,并促进可控性分析。接下来,引导跟踪算法利用扩展卡尔曼滤波器和GPS测量来估计卫星相对于引导的位置和速度。然后使用完整的状态反馈线性 - 二次稳压器(LQR)控制策略来使用完全空气动力学阻力将相对位置和速度驱动到零。本文还讨论了一种新型可伸缩阻力轨道设备(D3),其可以附加到现有的立方体结构,并且可以容易地缩放更大的卫星。 D3利用空气动力学和重力梯度力提供被动三轴姿态稳定,并且可以重复调制以进行空气动力学的轨道机动和受控重新入口。还讨论了计划2U CubeSat的设计,以测试飞行中的D3和控制算法。通过广泛的蒙特卡罗模拟验证了重新入口点定位算法,包括逼真的GPS测量误差和阻力不确定性。该算法能够将卫星引导到所需的去轨位置,平均误差低于25公里,并且在所有情况下,靶向误差足以用于碎屑缓解目的。这些算法的准确性和可靠性与已成功经历热真空,振动和疲劳检测的D3装置提供了廉价,可靠,综合的态度,轨道和可在大小和小型的轨道控制解决方案太空车辆,可能更换传统推进和姿态控制系统,并使每个人都更容易获得空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号