首页> 外文期刊>Assembly Automation >sEMG-based shoulder-elbow composite motion pattern recognition and control methods for upper limb rehabilitation robot
【24h】

sEMG-based shoulder-elbow composite motion pattern recognition and control methods for upper limb rehabilitation robot

机译:基于SEMG肩部弯头复合运动模式识别和控制方法,用于上肢康复机器人

获取原文
获取原文并翻译 | 示例

摘要

Purpose This paper aims to develop a signal acquisition system of surface electromyography (sEMG) and use the characteristics of (sEMG) signal to interference action pattern. Design/methodology/approach This paper proposes a fusion method based on combining the coefficient of AR model and wavelet coefficient. It improves the recognition rate of the target action. To overcome the slow convergence speed and local optimum in standard BP network, the study presents a BP algorithm which combine with LM algorithm and PSO algorithm, and it improves the convergence speed and the recognition rate of the target action. Findings Experiments verify the effectiveness of the system from two aspects the target motion recognition rate and the corresponding reaction speed of the robotic system. Originality/value The study developed a signal acquisition system of sEMG and used the characteristics of (sEMG) signal to interference action pattern. The myoelectricity integral values are presented to determine the starting point and end point of target movement, which is more effective than using single sample point amplitude method.
机译:目的本文旨在开发表面电拍摄(SEMG)的信号采集系统,并使用(SEMG)信号与干扰动作模式的特性。设计/方法/方法本文提出了一种基于组合AR模型和小波系数的融合方法。它提高了目标行动的识别率。为了克服标准BP网络中的缓慢收敛速度和局部最佳最佳,该研究介绍了一种与LM算法和PSO算法组合的BP算法,它提高了目标动作的收敛速度和识别率。研究结果实验验证了系统的有效性,从两个方面的目标运动识别率和机器人系统的相应反应速度。原创性/值该研究开发了SEMG的信号采集系统,并使用了(SEMG)信号的特性与干扰动作模式。呈现肌电积分值以确定目标运动的起点和终点,这比使用单个样本点幅度方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号