首页> 外文期刊>Archives of Computational Methods in Engineering >Mean-CVaR Portfolio Optimization Approaches with Variable Cardinality Constraint and Rebalancing Process
【24h】

Mean-CVaR Portfolio Optimization Approaches with Variable Cardinality Constraint and Rebalancing Process

机译:含有可变基数约束和重新平衡过程的含义 - CVAR产品组合优化方法

获取原文
获取原文并翻译 | 示例

摘要

This work compares Mean-CVaR portfolio optimization models with variable cardinality constraint and rebalancing process. It considers integer and continuous decision variables, the number of asset lots and asset investment rate, respectively, and the linear and non-linear formulations of CVaR. Exact methods are used to solve the linear models and parallel evolutionary algorithms are used to solve the non-linear models. The in-sample analysis compares the sets of multiobjective optimization solutions, evaluating the effect of the cardinality of portfolios, with respect to the returns and risks. The out-of-sample analysis performs simulations with stock market trading, considering historical data with different data granularity and transaction costs, aiming to analyze the effects of these characteristics on the financial risks and gains. Results show that models considering asset lots are more effective in practice and that the exact methods provide solutions closer to the heuristics, with greater execution time. Out-of-sample analysis indicates the robustness of the portfolio optimization models pointing out similar behavior of financial gains for different values of transaction costs. Optimization with higher granularity provides greater risk, but also offers chances of high profits.
机译:这项工作比较了具有可变基数约束和重新平衡过程的平均CVAR产品组合优化模型。它考虑了整数和连续决策变量,资产批次和资产投资率的数量以及CVAR的线性和非线性配方。用于解决线性模型的确切方法,并并行进化算法用于解决非线性模型。样本分析比较了多目标优化解决方案集,在回报和风险方面评估了投资组合的基数的影响。除样本外分析与股票市场交易进行了模拟,考虑到具有不同数据粒度和交易成本的历史数据,旨在分析这些特征对金融风险和收益的影响。结果表明,考虑资产批次的模型在实践中更有效,确切的方法提供更接近启发式的解决方案,具有更大的执行时间。除样本分析表明,投资组合优化模型的稳健性指出了对不同交易成本的不同价值的金融收益的类似行为。优化粒度较高提供了更大的风险,但也提供了高利润的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号