首页> 外文期刊>Archives of Computational Methods in Engineering >Impact of Color Spaces and Feature Sets in Automated Plant Diseases Classifier: A Comprehensive Review Based on Rice Plant Images
【24h】

Impact of Color Spaces and Feature Sets in Automated Plant Diseases Classifier: A Comprehensive Review Based on Rice Plant Images

机译:彩色空间和特征集在自动化植物疾病分类中的影响:基于水稻植物图像的综合评论

获取原文
获取原文并翻译 | 示例

摘要

Currently, researchers are developing numerous plant diseases recognition model using image processing and soft computing. The models are mainly based on the extraction of discolored features and applying in various soft computing approaches to automate plant diseases recognition process. The extracted features are statistical, frequency, spatial-frequency or hybrid features of captured images accessed in device-dependent or device-independent color spaces. The performance of diseases recognition system is significantly dependent upon the selection of color spaces and extracted features. This paper presents a comprehensive review of the impact of color spaces and feature sets on machine learning and rule base automated plant diseases classifier. The review performed with six categories of rice plant images with two machine learning and two rule base classifiers. Initially, a thorough literature review performed on the previous investigation based on color spaces and used feature sets for designing diseases recognition model. Then common conditions created to extract feature sets in different color spaces, and applied machine learning and rule base classifier to analyze the impact of color spaces with feature sets. The review presents a detailed discussion on the correlation between color spaces, feature sets, and performance of diseases recognition system. The review results reveal the most relevant features on specific color space for machine learning and rule base classifier. It also deduces that the performance of plant diseases classifier highly dependent upon used color space and extracted features.
机译:目前,研究人员正在使用图像处理和软计算开发许多植物疾病识别模型。该模型主要基于提取变色特征,并以各种软计算方法应用,以自动化植物疾病识别过程。提取的特征是在设备依赖性或无关的颜色空间中访问的捕获图像的统计,频率,空间频率或混合特征。疾病识别系统的性能显着取决于颜色空间的选择和提取的特征。本文介绍了对机器学习和规则基础自动化植物疾病分类器的颜色空间的影响和功能集的全面审查。审查用六个类别的稻米植物图像进行了两种机器学习和两个规则基本分类器。最初,在基于颜色空间和用于设计疾病识别模型的使用特征集的先前调查进行了彻底的文献综述。然后创建的常见条件以提取不同颜色空间中的功能集,并应用机器学习和规则基本分类器,分析与特征集的颜色空间的影响。审查介绍了有关疾病识别系统的颜色空间,功能集和性能之间的相关性的详细讨论。审查结果揭示了机器学习和规则基本分类器的特定颜色空间上最相关的功能。它还推断出植物疾病分类器的性能高度依赖于二手颜色空间和提取的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号