首页> 外文期刊>Applied Surface Science >Anomalous photoluminescence quenching in DIP/MoS_2 van der Waals heterostructure: Strong charge transfer and a modified interface
【24h】

Anomalous photoluminescence quenching in DIP/MoS_2 van der Waals heterostructure: Strong charge transfer and a modified interface

机译:DIP / MOS_2 van der WAALS异质结构中的异常光致发光淬火:强电荷转移和改进的界面

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Due to the fascinating optoelectronic properties of two-dimensional (2D) transition metal dichalcogenides (TMDs) and the flexible nature, vast library, and easy fabrication process of organic molecules, the combination of 2D TMD materials and organic molecules have been gaining enormous attention in recent years. The organic semiconductors can enhance the optoelectronic and improved transport properties by interfacing with atomically thin TMDs through vdW interaction. Here, we investigate the photoluminescence (PL) properties of type-II heterostructure made of monolayer molybdenum disulfide (ML MoS2) and a non-planar Diindenoperylene (DIP) molecules. A drastic quenching of PL intensity nearly 300% is observed with slightly redshift in DIP/MoS2 as compared to the PL of isolated MoS2. The observed quenching behavior in DIP/MoS2 heterostructure can be explained by the appeared 'trap - like' states in density of states (DOS), and suppression of exciton to trion ratio due to electron transfer from the lowest unoccupied molecular orbital (LUMO) level of DIP to the conduction band minima (CBM) of MoS2. Furthermore, the redshift in the PL of heterostructure could be due to weak coupling strength which is similar to 8 times smaller than that of the energy of A-exciton resonance of individual layers and dielectric screening effect induced by the non-planar DIP based organic layer. The expected strong interaction between the DIP molecule and MoS2 layer due to the permanent dipole moments (significant molecular quadruple moment 8.25D) of DIP molecules is another reason, which may slightly reduce the bandgap and results in red-shift of PL. We observed Raman (A(1g) phonon mode) is blue-shifted, which is supposed to stiffening due to the non-planar DIP molecule onto ML MoS2. The strong PL quenching behavior of DIP/MoS2 heterostructure can be a potential candidate for tailoring the optoelectronic properties of TMDs that may demonstrate for light-harvesting and can serve as the next generation TMD/organic-based photovoltaic applications.
机译:由于二维(2D)过渡金属二甲硅藻(TMDS)和柔性性质,庞大图书馆和易于制造有机分子的制造过程,2D TMD材料和有机分子的组合越来越庞大最近几年。通过通过VDW相互作用与原子薄的TMD接口,有机半导体可以通过与原子薄的TMD接口来增强光电和改善的传输特性。在此,我们研究了由单层钼二硫化物(ML MOS2)制成的II型异质结构的光致发光(PL)性质和非平面二茚丙烯烯(DIP)分子。与隔离MOS2的PL相比,在DIP / MOS2中略微红移的PL强度的激烈淬火近300%。 DIP / MOS2异质结构中观察到的猝灭行为可以通过状态(DOS)的密度(DOS)的状态来解释,并且由于来自最低未占分子轨道(LUMO)水平的电子转移而抑制激子与TRION比率的抑制倾斜于MOS2的导通带最小(CBM)。此外,异质结构PL的红移可能是由于弱耦合强度,其类似于小于各层的A-Excizon共振能量和由非平面浸基的有机层诱导的介电筛分效果的8倍。由于永久偶极矩(显着分子四重矩8.25d)的浸渍分子和MOS2层之间的预期强相互作用是浸渍分子的另一个原因,这可能略微减少带隙并导致PL的红色偏移。我们观察了拉曼(A(1G)声子模式)是蓝移,这应该由于非平面浸渍分子到ML MOS2而引起的。 DIP / MOS2异质结构的强PL淬火行为可以是用于定制TMDS的光电性能的潜在候选者,其可以证明用于光学利用并且可以用作下一代TMD /有机的光伏应用。

著录项

  • 来源
    《Applied Surface Science》 |2020年第15期|147213.1-147213.10|共8页
  • 作者单位

    Zhejiang Univ State Key Lab Silicon Mat Sch Informat Sci & Elect Engn ISEE Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ State Key Lab Silicon Mat Sch Informat Sci & Elect Engn ISEE Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ State Key Lab Silicon Mat Sch Informat Sci & Elect Engn ISEE Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Dept Polymer Sci & Engn Hangzhou 310027 Peoples R China;

    Zhejiang Univ State Key Lab Silicon Mat Sch Informat Sci & Elect Engn ISEE Hangzhou 310027 Zhejiang Peoples R China|ZJU Hangzhou Global Sci & Technol Innovat Ctr Hangzhou 311200 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MoS2; DIP; Type-II heterostructure; PL and Raman modulation; Surface morphology;

    机译:MOS2;浸渍;II型异质结构;PL和拉曼调制;表面形态;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号