...
首页> 外文期刊>Applied Surface Science >Synthesis of shape-controlled Pd nanocrystals on carbon nanospheres and electrocatalytic oxidation performance for ethanol and ethylene glycol
【24h】

Synthesis of shape-controlled Pd nanocrystals on carbon nanospheres and electrocatalytic oxidation performance for ethanol and ethylene glycol

机译:乙醇和乙二醇的碳纳米球体和电催化氧化性能的形状控制Pd纳米晶体的合成

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Palladium nanocrystals (Pd NCs) on carbon nanospheres (CNS) are the most important electrocatalysts especially in a direct alcohol fuel cell (DAFC). The shape and size-controlled of Pd NCs are crucial to their electrocatalytic activity. For the first time, we focused on the effect of ultrasound irradiation time interval to build the morphology and size-controlled of Pd NCs. Notably, the functional groups (-COO-, and -SO3) situated on the edges and surfaces of CNS act as an effective capping agent and supporting materials for the growth of various morphology of Pd NCs on CNS surface. In this case, there is no need for an extra stabilizer or reducing agent for the preparation of Pd NCs. The catalytic activity of various Pd-CNS nanocomposites was investigated systematically using an electrochemical workstation. The results have shown that small-sized Pd NCs with a spherical shape had an enhanced activity and stability for alcohol oxidation relative to those of hexagonal Pd NCs and commercial Pd/C. Especially, the spherical Pd-CNS show mass activity 1.6 and 2.8 folds higher than that of hexagonal Pd-CNS and commercial Pd/C, respectively, and significantly maintain high activities after 1000 cycles of intensive durability test.
机译:碳纳米球(CNS)上的钯纳米晶(PD NCS)是最重要的电催化剂,尤其是在直接酒精燃料电池(DAFC)中。 PD NCS的形状和尺寸控制对于它们的电催化活性至关重要。我们首次专注于超声辐射时间间隔的影响,构建PD NCS的形态和规模控制。值得注意的是,位于CNS边缘和表面上的官能团(-COO-和-SO3)充当CNS表面上PD NCS各种形态的有效封端剂和支持材料。在这种情况下,不需要额外的稳定剂或用于制备PD NC的还原剂。使用电化学工作站系统地研究了各种PD-CNS纳米复合材料的催化活性。结果表明,具有球形形状的小型Pd NCs具有相对于六边形PD NC和商业PD / C的醇氧化的增强活性和稳定性。特别是,球形PD-CNS分别显示出质量活性1.6和2.8倍,分别高于六边形PD-CNS和商业PD / C,并在1000次密集耐久性测试后显着保持高活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号