首页> 外文期刊>Applied Surface Science >Zn doped 5-MnO_2 nano flakes: An efficient electrode material for aqueous and solid state asymmetric supercapacitors
【24h】

Zn doped 5-MnO_2 nano flakes: An efficient electrode material for aqueous and solid state asymmetric supercapacitors

机译:锌掺杂的5-MnO_2纳米片:一种用于水性和固态非对称超级电容器的有效电极材料

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Asymmetric supercapacitors based on aqueous and solid-state electrolytes are useful for a variety of applications. The birnessite delta-MnO2 is one of the efficient materials from the MnOx family characterized by large interlayer distance (similar to 7.3 angstrom) and high theoretical specific capacitance (similar to 1370 F g(-1)). However the main concern which hinders its usage for practical applications is its low electronic conductivity (similar to 10(-6) S cm(-1)). There are different means to enhance the conductivity and in the present studies, two simultaneous methods viz; a method of synthesis of nano-flakes along with Zn-doping in delta-MnO2 is implemented. A specific capacitance of similar to 466 F g(-1) at a current density of 0.5 A g(-1) is obtained for an optimum Zn doping concentration of 1 mol% which is almost two times more than the corresponding pristine one. Both aqueous and solid-state asymmetric supercapacitor devices are fabricated using Zn doped delta-MnO2 as electrode material which can be easily scalable to industrial level. A lab-scale demonstration prototype is constructed which essentially validated the charging of solid-state supercapacitor using battery and allowing the supercapacitor to discharge through a red-LED by means of a two-way switch. (C) 2018 Published by Elsevier B. V.
机译:基于水性和固态电解质的不对称超级电容器可用于多种应用。水钠锰矿δ-MnO2是MnOx族中的一种有效材料,其特征是层间距离大(约7.3埃)和理论比电容高(约1370 F g(-1))。但是,阻碍其在实际应用中使用的主要问题是其低电导率(类似于10(-6)S cm(-1))。有多种提高电导率的方法,在本研究中,有两种同时进行的方法,即:实现了一种在δ-MnO2中合成纳米薄片和Zn掺杂的方法。对于最佳的Zn掺杂浓度为1 mol%,比相应的原始浓度高几乎两倍的情况下,在0.5 A g(-1)的电流密度下可获得类似于466 F g(-1)的比电容。水性和固态非对称超级电容器器件均使用掺锌的MnO2作为电极材料制造,可轻松扩展至工业水平。构建了一个实验室规模的演示原型,该原型从本质上验证了使用电池对固态超级电容器的充电,并允许该超级电容器通过双向开关通过红色LED放电。 (C)2018由Elsevier B.V.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号