首页> 外文期刊>Applied Surface Science >Electrochemical behaviour of manganese & ruthenium mixed oxide@ reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor
【24h】

Electrochemical behaviour of manganese & ruthenium mixed oxide@ reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor

机译:锰和钌混合氧化物@还原氧化石墨烯纳米带复合材料在对称和不对称超级电容器中的电化学行为

获取原文
获取原文并翻译 | 示例
       

摘要

This paper reports the interaction of 3d-4d transition metal mixed oxide as simultaneous existence of M(3d) and M(4d) expectedly enhance the electrochemical performance of the resulting composite. Electrochemical performance of MnO2-RuO2 nanoflakes reduced graphene oxide nanoribbon composite (MnO2-RuO2@GNR) is intensively explored in symmetric and asymmetric supercapacitor assembly. In situ incorporation of graphene oxide nanoribbon (GONR) during synthesis provides efficient binding sites for growth of MnO2-RuO2 nanoflakes via their surface functionalities. The interconnected MnO2-RuO2 nanoflakes via GNR form a network with enhanced diffusion kinetics leading to efficient supercapacitor performance. Fabricated asymmetric supercapacitor reveals energy density 60 Wh kg(-1) at power density 14 kW kg(-1). Based on the analysis of impedance data in terms of complex power, quick response time of supercapacitor reveals excellent power delivery of the device. Improved cycling stability after 7000 charge discharge cycles for symmetric and asymmetric supercapacitor highlights the buffering action of GNR and can be generalized for next generation high performance supercapacitor. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文报道了3d-4d过渡金属混合氧化物的相互作用,因为同时存在M(3d)和M(4d)有望增强所得复合材料的电化学性能。在对称和非对称超级电容器组件中,对MnO2-RuO2纳米薄片的电化学性能进行了研究,还原了氧化石墨烯纳米带复合材料(MnO2-RuO2 @ GNR)。合成过程中原位掺入氧化石墨烯纳米带(GONR)通过其表面功能为MnO2-RuO2纳米薄片的生长提供了有效的结合位点。经由GNR相互连接的MnO2-RuO2纳米薄片形成具有增强的扩散动力学的网络,从而导致高效的超级电容器性能。制成的不对称超级电容器在功率密度14 kW kg(-1)时的能量密度为60 Wh kg(-1)。基于对阻抗数据的复杂功率分析,超级电容器的快速响应时间显示出该器件出色的功率传输能力。对称和不对称超级电容器经过7000个电荷放电循环后,改善的循环稳定性突显了GNR的缓冲作用,可以推广用于下一代高性能超级电容器。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号