首页> 外文期刊>Applied physics >Remote sensing of atmospheric gases with optical correlation spectroscopy and lidar: first experimental results on water vapor profile measurements
【24h】

Remote sensing of atmospheric gases with optical correlation spectroscopy and lidar: first experimental results on water vapor profile measurements

机译:利用光学相关光谱和激光雷达遥感大气中的气体:水蒸气剖面测量的首个实验结果

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the first experimental demonstration of the optical correlation spectroscopy lidar (OCS-lidar) is proposed. It is a new active remote sensing methodology to measure range-resolved atmospheric gas concentrations, based on broadband laser spectroscopy and light amplitude modulation. As a first step, a numerical study is performed for OCS-lidar measurements to optimize the accuracy of the range-resolved gas concentration measurement. Then, we demonstrate the ability of the OCS-lidar methodology to monitor the water vapor in the planetary boundary layer using the 4v 720-nm absorption band. In addition to this first experimental proof, two different experimental configurations are proposed. The amplitude modulation, related to the optical correlation spectroscopy, is operated either at the emission with an active amplitude modulator before the backscattering process, or with passive optical filters on the laser backscat-tered light. For both configurations, range-resolved gas concentration measurements, achieved with a micro-pulse ground-based OCS-lidar, are presented. An extended discussion presents the mixing-ratio accuracy, which reaches ± 1,000 ppm at a 2,000-m range for a range resolution of 200 m. The differences between the two experimental configurations are also discussed.
机译:本文提出了光学相关光谱激光雷达(OCS-lidar)的第一个实验演示。它是一种新的主​​动遥感方法,它基于宽带激光光谱和光幅度调制来测量距离分辨的大气中的气体浓度。第一步,对OCS-激光雷达测量进行数值研究,以优化范围分辨气体浓度测量的准确性。然后,我们证明了OCS-激光雷达方法使用4v 720-nm吸收带监测行星边界层中水蒸气的能力。除了第一个实验证明之外,还提出了两种不同的实验配置。与光学相关光谱有关的振幅调制,是在反向散射过程之前使用有源振幅调制器在发射时进行操作的,或者是在激光反向散射光上使用无源滤光器进行操作的。对于这两种配置,均提出了使用微脉冲地面OCS激光雷达实现的范围分辨气体浓度测量。扩展的讨论提出了混合比精度,在200 m的范围分辨率下,在2,000 m的范围内达到±1,000 ppm。还讨论了两种实验配置之间的差异。

著录项

  • 来源
    《Applied physics》 |2013年第2期|265-275|共11页
  • 作者单位

    Institut Lumiere Matiere, UMR5306 Universite Lyon 1-CNRS, Universite de Lyon, 10 rue Ada Byron, 69622 Villeurbanne, France;

    Institut Lumiere Matiere, UMR5306 Universite Lyon 1-CNRS, Universite de Lyon, 10 rue Ada Byron, 69622 Villeurbanne, France;

    Institut Lumiere Matiere, UMR5306 Universite Lyon 1-CNRS, Universite de Lyon, 10 rue Ada Byron, 69622 Villeurbanne, France;

    Leosphere France, 14-16 rue Jean Rostand, 91400 Orsay, France;

    Institut Lumiere Matiere, UMR5306 Universite Lyon 1-CNRS, Universite de Lyon, 10 rue Ada Byron, 69622 Villeurbanne, France;

    Institut Lumiere Matiere, UMR5306 Universite Lyon 1-CNRS, Universite de Lyon, 10 rue Ada Byron, 69622 Villeurbanne, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号