...
首页> 外文期刊>Applied Physics Letters >Computational optimization of transcranial focused ultrasound stimulation: Toward noninvasive, selective stimulation of deep brain structures
【24h】

Computational optimization of transcranial focused ultrasound stimulation: Toward noninvasive, selective stimulation of deep brain structures

机译:经颅重聚焦超声刺激的计算优化:对深脑结构的非侵入性,选择性刺激

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Low-intensity focused ultrasound is emerging as a high-resolution highly selective alternative to standard noninvasive transcranial brain stimulation techniques. A major challenge in using ultrasound devices is designing a stimulator capable of efficiently focusing the acoustic wave to selectively target a specific brain region by compensating for the wavefront distortions induced by the intact skull. Single-element transducers are efficient in stimulating cortical areas in both non-human and human primates. However, reaching deeper brain structures with millimeter resolution and high specificity requires the use of ad hoc multi-element devices characterized by a specific number of piezoelectric elements that optimize the energy deposition in the focal region while simultaneously minimizing the off-focus dispersion. The high cost and complexity of adequately controlling the thousands of elements used generally for such stimulators have limited their use in neuromodulation applications. This study defines the optimal configuration of a multi-element stimulator for low-intensity focused ultrasound through a full-wave realistic numerical model that includes both the stimulator geometry and a detailed anatomical head model. The performance of the device was evaluated. We investigated the influence of the number of piezoelectric elements in the stimulator on its transcranial focusing capabilities. Our results confirm that the focusing optimization improves as the number of elements increased (from 16 to 256). With only 96 point-sources, there was a good trade-off between cost and focusing efficiency. Our study provides a cost-effective stimulator design that enables a standard focusing procedure and a steering technique enacted without prior knowledge about the skull's local acoustic impedance.
机译:低强度聚焦超声是一种新兴的高分辨率高选择性的替代标准的非侵入性经颅脑刺激技术。在使用超声装置的一个主要的挑战是设计一种能够有效地聚焦声波,以选择性地通过补偿由完整颅骨引起的波前畸变靶向特定脑区域的刺激。单元素换能器在两个非人类和人类的灵长类动物刺激皮层区高效。然而,在达到与毫米的分辨率和高特异性更深的大脑结构需要使用,其特征在于,在焦点区域优化能量沉积,而同时最小化离焦分散压电元件的具体数目特设的多元件器件。的适当地控制数千通常用于这样的刺激元件的高成本和复杂性限制了它们在神经调节应用中使用。本研究定义了低强度的多元件刺激器的最佳配置聚焦超声波通过一个全波现实数值模型,其包括刺激器的几何形状和详细解剖头部模型两者。该装置的性能进行了评价。我们研究了其经颅聚焦能力刺激压电元件的数量的影响。我们的结果证实,聚焦优化提高作为元件的数量增加了(从16至256)。由于只有96点的来源,有一个很好的权衡成本和聚焦效率之间。我们的研究提供了一个高性价比的刺激设计,从而实现一个标准的聚焦过程并没有关于头骨的本地声阻抗先验知识颁布转向技术。

著录项

  • 来源
    《Applied Physics Letters》 |2021年第23期|233702.1-233702.6|共6页
  • 作者单位

    Center for Life Nano- and Neuro-Science Istituto Italiano di Tecnologia Rome 00161 Italy;

    Center for Life Nano- and Neuro-Science Istituto Italiano di Tecnologia Rome 00161 Italy CNR NANOTEC-lnstitute of Nanotechnology Soft and Living Matter Lab Rome 00185 Italy;

    Center for Life Nano- and Neuro-Science Istituto Italiano di Tecnologia Rome 00161 Italy Department of Information Engineering Electronics and Telecommunications Sapienza University of Rome 00184 Italy;

    Center for Life Nano- and Neuro-Science Istituto Italiano di Tecnologia Rome 00161 Italy Department of Information Engineering Electronics and Telecommunications Sapienza University of Rome 00184 Italy;

    Center for Life Nano- and Neuro-Science Istituto Italiano di Tecnologia Rome 00161 Italy Fondazione Santa Lucia IRCCS Rome 00179 Italy;

    Center for Life Nano- and Neuro-Science Istituto Italiano di Tecnologia Rome 00161 Italy Department of Physics Sapienza University of Rome 00185 Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号