首页> 外文期刊>Applied Physics Letters >Retention failure analysis of metal-oxide based resistive memory
【24h】

Retention failure analysis of metal-oxide based resistive memory

机译:基于金属氧化物的电阻式存储器的保留失效分析

获取原文
获取原文并翻译 | 示例
           

摘要

Resistive switching devices (RRAMs) have been proposed a promising candidate for future memory and neuromorphic applications. Central to the successful application of these emerging devices is the understanding of the resistance switching and failure mechanism, and identification of key physical parameters that will enable continued device optimization. In this study, we report detailed retention analysis of a TaO_x based RRAM at high temperatures and the development of a microscopic oxygen diffusion model that fully explains the experimental results and can be used to guide future device developments. The device conductance in low resistance state (LRS) was constantly monitored at several elevated temperatures (above 300 ℃), and an initial gradual conductivity drift followed by a sudden conductance drop were observed during retention failure. These observations were explained by a microscopic model based on oxygen vacancy diffusion, which quantitatively explains both the initial gradual conductance drift and the sudden conductance drop. Additionally, a non-monotonic conductance change, with an initial conductance increase followed by the gradual conductance decay over time, was observed experimentally and explained within the same model framework. Specifically, our analysis shows that important microscopic physical parameters such as the activation energy for oxygen vacancy migration can be directly calculated from the failure time versus temperature relationship. Results from the analytical model were further supported by detailed numerical multi-physics simulation, which confirms the filamentary nature of the conduction path in LRS and the importance of oxygen vacancy diffusion in device reliability. Finally, these high-temperature stability measurements also reveal the existence of multiple filaments in the same device.
机译:电阻开关设备(RRAM)已被提出为未来的记忆和神经形态应用的有前途的候选者。这些新兴设备成功应用的关键是对电阻切换和故障机制的理解,以及对关键物理参数的识别,这些参数将使设备得以持续优化。在这项研究中,我们报告了基于TaO_x的RRAM在高温下的详细保留分析以及微观氧扩散模型的开发,该模型可以充分解释实验结果,并可以用来指导未来的设备开发。在几个升高的温度(300℃以上)下,不断监测低电阻状态(LRS)的器件电导,并且在保持失效期间观察到初始电导率逐渐漂移,随后电导突然下降。这些观察结果是由基于氧空位扩散的微观模型解释的,该模型定量地解释了初始的逐渐电导漂移和突然的电导下降。此外,实验观察到了非单调电导变化,其初始电导增加,随后电导随时间逐渐衰减,并在同一模型框架内进行了解释。具体而言,我们的分析表明,可以从失效时间与温度的关系直接计算出重要的微观物理参数,例如氧空位迁移的活化能。分析模型的结果进一步得到详细的数值多物理场仿真的支持,这证实了LRS传导路径的丝状性质以及氧空位扩散对器件可靠性的重要性。最后,这些高温稳定性测量还揭示了同一设备中存在多个细丝。

著录项

  • 来源
    《Applied Physics Letters》 |2014年第11期|113510.1-113510.5|共5页
  • 作者单位

    Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA;

    Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA;

    Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA;

    Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号