首页> 外文期刊>Applied Mathematical Modelling >A novel robust fuzzy mean-UPM model for green closed-loop supply chain network design under distribution ambiguity
【24h】

A novel robust fuzzy mean-UPM model for green closed-loop supply chain network design under distribution ambiguity

机译:一种新型鲁棒模糊均衡型号模型,用于分布歧义下的绿色闭环供应链网络设计

获取原文
获取原文并翻译 | 示例

摘要

Green closed-loop supply chain (GCLSC) is a supply chain that encompasses forward and reverse flows of components and products in logistic networks with a focus on economic and environmental performance. In the decision-making process of GCLSC, the presence of uncertainty and risk originating from the size and complexity of network is crucial to consider, and the distribution of uncertain parameter may be ambiguous. To characterize the ambiguity caused by distributional perturbation, a novel ambiguity distribution set is proposed, and further a new upside risk: upper partial moment with power q is introduced to quantify the economic risk in the GCLSC. Subsequently, a distributionally robust fuzzy GCLSC network design model which attempts to optimize the worst-case performance of the network is developed with the perspective of a trade-off between upside risk and expectation of economic cost. To format a sustainable GCLSC paradigm, the policy of carbon cap is adopted to control carbon emissions in terms of environmental constraints. Furthermore, the tractable counterpart of the proposed model is obtained by transforming distributionally robust credibility objective and constraints into their equivalent forms under ambiguous distribution of uncertain parameter. Finally, a case study on Coca-Cola Company in Northeast China is investigated to test and verify the proposed model. The advantage of proposed model is demonstrated through comparative study on distribution ambiguity free and without environmental constraint problem. Computational results reveal that the proposed model has superior capability of immunity against the risk of distribution ambiguity.
机译:绿色闭环供应链(GCLSC)是一种供应链,包括在物流网络中的组件和产品的前进和逆转流,重点是经济和环境性能。在GCLSC的决策过程中,存在源自网络大小和复杂性的不确定性和风险至关重要,并且不确定参数的分布可能是模糊的。为了表征由分布扰动引起的模糊性,提出了一种新的模糊分布集,并进一步提出了新的上行风险:引入了电力Q的上部局部时刻,以量化GCLSC中的经济风险。随后,通过在颠倒风险与经济成本期望之间进行权衡的视角,开发了一种经常稳健的模糊GCLSC网络设计模型,其试图优化网络的最坏情况性能。为了格式化可持续的GCLSC范式,采用碳帽的政策来控制环境限制方面的碳排放。此外,通过在不确定参数的模糊分布下将分布稳健的可信度目标和约束转化为其等同形式的分布稳健的可信度目标和约束来获得所提出的模型的易解对应物。最后,研究了东北地区科卡尔公司的案例研究,以测试和验证拟议的模型。通过对分布模糊性的比较研究和没有环境约束问题的比较研究来证明所提出的模型的优点。计算结果表明,拟议的模型具有较强的免疫力免受分布歧义的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号