首页> 外文期刊>Applied Mathematical Modelling >Modelling and validation: Casting of Al and TiAl alloys in gravity and centrifugal casting processes
【24h】

Modelling and validation: Casting of Al and TiAl alloys in gravity and centrifugal casting processes

机译:建模和验证:在重力和离心铸造过程中铸造Al和TiAl合金

获取原文
获取原文并翻译 | 示例
       

摘要

Components which best utilise the properties of high temperature titanium alloys are characterised by thin sections of a few millimetres thickness and hundreds of millimetres length. These alloys however are difficult to work with, being highly reactive in a molten state, necessitating a low superheat during processing. Centrifugal casting is therefore utilised as a candidate production method, as under the centrifugal force, metal can rapidly fill thicknesses substantially less than a millimetre before it solidifies. However, due to the high liquid metal velocity developed there is a high risk of turbulent flow and of the trapping of any gas present within the liquid metal. This challenging application involves a combination of complex rotating geometries, significant centrifugal forces and high velocity transient free surface flows, coupled with simultaneous heat transfer and solidification. Capturing these interacting physical phenomena, free surface flows, trapped air and associated defects is a complex modelling task. Building upon earlier work on computational modelling the authors have previously described to capture and validate the fluid dynamics behaviour of rotating systems, this contribution considers the modelling and validation of such systems to capture the coupled flow and thermal solidification behaviour and associated defect development. A bench-mark test case is employed to validate the effect of solidification on the fluidity of an aluminium alloy. Validation is also performed against a series of casting experiments to establish the models ability to capture the filling process and predict defects due to air entrapment within the solidified metal.
机译:最佳利用高温钛合金性能的组件的特征是厚度为几毫米,长度为几百毫米的薄片。然而,这些合金难以加工,在熔融状态下具有高反应性,因此在加工过程中需要较低的过热度。因此,离心铸造被用作候选的生产方法,因为在离心力的作用下,金属在凝固之前可以迅速填充基本上小于1毫米的厚度。然而,由于所形成的高液态金属速度,所以存在湍流和捕获液态金属内存在的任何气体的高风险。这一具有挑战性的应用涉及复杂的旋转几何形状,显着的离心力和高速瞬态自由表面流,以及同时进行的传热和固化。捕捉这些相互作用的物理现象,自由表面流动,滞留的空气和相关的缺陷是一项复杂的建模任务。在先前关于计算建模的早期工作的基础上,作者先前已经描述了捕获和验证旋转系统的流体动力学行为,这一贡献考虑了对此类系统的建模和验证,以捕获耦合的流动和热固化行为以及相关的缺陷发展。使用基准测试案例来验证凝固对铝合金流动性的影响。还针对一系列铸造实验进行了验证,以建立模型来捕获填充过程并预测由于凝固金属内的空气滞留导致的缺陷的能力。

著录项

  • 来源
    《Applied Mathematical Modelling》 |2013年第15期|7633-7643|共11页
  • 作者单位

    School of Metallurgy and Materials, University of Birmingham, Birmingham, UK;

    College of Engineering, Swansea University, Singleton Park, Swansea, Wales, UK;

    School of Metallurgy and Materials, University of Birmingham, Birmingham, UK;

    College of Engineering, Swansea University, Singleton Park, Swansea, Wales, UK;

    Rolls-Royce Plc, P.O. Box 31, Derby DE24 8BJ, UK;

    School of Metallurgy and Materials, University of Birmingham, Birmingham, UK;

    College of Engineering, Swansea University, Singleton Park, Swansea, Wales, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computational modelling; Centrifugal casting; Free-surface flows; Fluidity;

    机译:计算建模;离心铸造自由表面流动;流动性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号