首页> 外文期刊>Applied Mathematical Modelling >Modelling and parameter identification of a nonlinear enzyme-catalytic time-delayed switched system and its parallel optimization
【24h】

Modelling and parameter identification of a nonlinear enzyme-catalytic time-delayed switched system and its parallel optimization

机译:非线性酶催化时滞切换系统的建模,参数辨识及其并行优化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a nonlinear enzyme-catalytic time-delayed switched system with unknown state-delays, switching times and system parameters for describing the process of batch culture of glycerol bioconversion to 1,3-propanediol (1,3-PD) induced by Klebsiella pneumoniae (K. pneumoniae). Some important properties of the time-delayed switched system are discussed. In consideration of the difficulty in accurately measuring the concentration of intracellular substances and the absence of equilibrium points for the time-delayed switched system, we quantitatively define biological robustness of the intracellular substance concentrations for the entire process of batch culture. Our goal is to identify the unknown quantities. To this end, we formulate an optimization problem in which the cost function minimizes the defined biological robustness and the unknown state-delays, switching times and system parameters are regarded as decision variables. This optimization problem is subject to the time-delayed switched system, continuous state inequality constraints and parameter constraints. The hybrid time-scaling transformation, constraint transcription and local smoothing approximation techniques are used to convert this optimization problem to a sequence of approximate subproblems. In consideration of both the difficulty of finding analytical solutions and the highly complex nature of this optimization problem, we develop a parallel particle swarm optimization (PPSO) algorithm to solve these approximate subproblems. Finally, we explore the appropriateness of the optimal estimates for the state-delays, switching times and system parameters as well as the effectiveness of the parallel algorithm via numerical simulations.
机译:在本文中,我们提出了一个具有未知状态延迟,转换时间和系统参数的非线性酶催化时滞切换系统,用于描述甘油生物转化为1,3-丙二醇(1,3-PD)的过程。由肺炎克雷伯菌(Klebsiella pneumoniae)诱导。讨论了时滞交换系统的一些重要特性。考虑到准确测量细胞内物质浓度的困难以及时滞切换系统缺少平衡点的问题,我们在分批培养的整个过程中定量定义了细胞内物质浓度的生物稳健性。我们的目标是识别未知数量。为此,我们提出了一个优化问题,其中成本函数使定义的生物鲁棒性最小化,并且未知的状态延迟,切换时间和系统参数被视为决策变量。该优化问题受制于时滞切换系统,连续状态不等式约束和参数约束。混合时标变换,约束转录和局部平滑近似技术被用于将该优化问题转换为一系列近似子问题。考虑到找到解析解的难度以及此优化问题的高度复杂性,我们开发了一种并行粒子群优化(PPSO)算法来解决这些近似子问题。最后,我们通过数值模拟探讨了状态延迟,切换时间和系统参数的最佳估计的适当性,以及并行算法的有效性。

著录项

  • 来源
    《Applied Mathematical Modelling》 |2016年第20期|8276-8295|共20页
  • 作者单位

    School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, PR China,School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, Liaoning, PR China,School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, PR China;

    School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, PR China;

    Teaching and Research Office of Mathematics, Department of Basics, PLA Dalian Naval Academy, Dalian 116018, Liaoning, PR China;

    School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, PR China;

    School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, PR China;

    School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, Liaoning, PR China;

    School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Parameter identification; Time-delayed switched system; Biological robustness; Hybrid time-scaling transformation and constraint transcription; Parallel PSO;

    机译:参数识别;延时交换系统;生物鲁棒性;混合时标转换和约束转录;并行PSO;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号