首页> 外文期刊>Applied Energy >Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles
【24h】

Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles

机译:超临界二氧化碳布雷顿功率循环的印刷电路换热器的设计和动态建模

获取原文
获取原文并翻译 | 示例
           

摘要

Due to the unique geometries and hydraulics of printed circuit heat exchangers and rapidly changing properties of supercritical carbon dioxide, the effective design and rating of printed circuit heat exchangers is an essential requirement for their use in supercritical carbon dioxide power cycles. In this study, one-dimensional design and dynamic models have been developed in Aspen Custom Modeler for printed circuit heat exchangers utilized in printed circuit heat exchangers Brayton power cycles. The design model is used to determine the optimal geometry parameters by minimizing the metal mass. The dynamic model is used to predict transient behavior and can be easily implemented into system-level models developed in Aspen Plus Dynamics for cycle performance evaluations. In these models, the heat transfer coefficient and friction factor are calculated using data reported by Heatric, a prominent printed circuit heat exchanger manufacturer. Both models are validated by comparing with the data from a small-scale exchanger used in the 100 kWe facility operated by the Naval Nuclear Laboratory, and then applied to design and simulate low- and high-temperature recuperators for a 10 MWe supercritical carbon dioxide indirect recompression closed Brayton cycle, which is of interest to the U.S. Department of Energy. The designs and dynamic responses of the printed circuit heat exchangers are compared with conventional shell-and-tube exchangers and microtube shell-and-tube exchangers for the same applications. The simulation results indicate that the proposed printed circuit heat exchangers have fast dynamic responses due to their small metal masses and high heat transfer coefficients compared with the conventional shell-and tube exchangers. Even though the metal masses of the designed PCHEs are slightly higher than those of the microtube shell-and-tube exchangers, the printed circuit heat exchangers are still promising candidates for heat recuperation because of their mature manufacturing procedures and abundant laboratory and industrial operating experience.
机译:由于印刷电路换热器的独特几何形状和液压特性以及超临界二氧化碳的快速变化的特性,对于印刷电路换热器在超临界二氧化碳功率循环中的使用,有效的设计和额定值是必不可少的要求。在这项研究中,在Aspen Custom Modeler中开发了一维设计和动态模型,用于印刷电路换热器布雷顿功率循环中使用的印刷电路换热器。设计模型用于通过最小化金属质量来确定最佳几何参数。动态模型用于预测瞬态行为,可以轻松地实现为Aspen Plus Dynamics开发的系统级模型,用于评估循环性能。在这些模型中,传热系数和摩擦系数是使用著名印刷电路换热器制造商Heatric报告的数据计算得出的。通过与海军核实验室运营的100 kWe设施中使用的小型交换器的数据进行比较,对这两个模型进行了验证,然后将其用于设计和模拟10 MWe超临界二氧化碳间接的低温和高温换热器再压缩封闭的布雷顿循环,这是美国能源部感兴趣的。将印刷电路换热器的设计和动态响应与相同应用的常规管壳式换热器和微管壳管式换热器进行了比较。仿真结果表明,与传统的壳管式换热器相比,拟议的印刷电路换热器具有较小的金属质量和较高的传热系数,因此具有较快的动态响应。尽管设计的PCHE的金属质量比微管壳管式热交换器的金属质量稍高,但由于印刷电路热交换器的成熟制造工艺以及丰富的实验室和工业操作经验,它们仍有望成为热回收的候选材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号