首页> 外文期刊>Applied computational intelligence and soft computing >Prediction of Surface Roughness in End Milling Process Using Intelligent Systems: A Comparative Study
【24h】

Prediction of Surface Roughness in End Milling Process Using Intelligent Systems: A Comparative Study

机译:基于智能系统的立铣加工中表面粗糙度的预测研究

获取原文
获取原文并翻译 | 示例

摘要

A study is presented to model surface roughness in end milling process. Three types of intelligent networks have been considered. They are (i) radial basis function neural networks (RBFNs), (ii) adaptive neurofuzzy inference systems (ANFISs), and (iii) genetically evolved fuzzy inference systems (G-FISs). The machining parameters, namely, the spindle speed, feed rate, and depth of cut have been used as inputs to model the workpiece surface roughness. The goal is to get the best prediction accuracy. The procedure is illustrated using experimental data of end milling 6061 aluminum alloy. The three networks have been trained using experimental training data. After training, they have been examined using another set of data, that is, validation data. Results are compared with previously published results. It is concluded that ANFIS networks may suffer the local minima problem, and genetic tuning of fuzzy networks cannot insure perfect optimality unless suitable parameter setting (population size, number of generations etc.) and tuning range for the FIS, parameters are used which can be hardly satisfied. It is shown that the RBFN model has the best performance (prediction accuracy) in this particular case.
机译:提出了对立铣刀表面粗糙度建模的研究。已经考虑了三种类型的智能网络。它们是(i)径向基函数神经网络(RBFN),(ii)自适应神经模糊推理系统(ANFIS)和(iii)遗传进化的模糊推理系统(G-FIS)。加工参数,即主轴速度,进给速度和切削深度已用作模型化工件表面粗糙度的输入。目的是获得最佳的预测精度。使用端铣削6061铝合金的实验数据说明了该过程。这三个网络已使用实验训练数据进行了训练。训练后,已使用另一组数据(即验证数据)对它们进行了检查。将结果与以前发布的结果进行比较。结论是,ANFIS网络可能会遇到局部极小问题,除非对FIS进行适当的参数设置(种群大小,世代数等)和调整范围,否则模糊网络的遗传调整不能确保完美的最优性。几乎不满意。结果表明,RBFN模型在这种特殊情况下具有最佳性能(预测精度)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号