首页> 外文期刊>Applied computational intelligence and soft computing >Segmentation and Classification of Vowel Phonemes of Assamese Speech Using a Hybrid Neural Framework
【24h】

Segmentation and Classification of Vowel Phonemes of Assamese Speech Using a Hybrid Neural Framework

机译:混合神经网络对阿萨姆语语音元音音素的分割与分类

获取原文
获取原文并翻译 | 示例

摘要

In spoken word recognition, one of the crucial points is to identify the vowel phonemes. This paper describes an Artificial Neural Network (ANN) based algorithm developed for the segmentation and recognition of the vowel phonemes of Assamese language from some words containing those vowels. Self-Organizing Map (SOM) trained with a various number of iterations is used to segment the word into its constituent phonemes. Later, Probabilistic Neural Network (PNN) trained with clean vowel phonemes is used to recognize the vowel segment from the six different SOM segmented phonemes. One of the important aspects of the proposed algorithm is that it proves the validation of the recognized vowel by checking its first formant frequency. The first formant frequency of all the Assamese vowels is predetermined by estimating pole or formant location from the linear prediction (LP) model of the vocal tract. The proposed algorithm shows a high recognition performance in comparison to the conventional Discrete Wavelet Transform (DWT) based segmentation.
机译:在语音识别中,关键点之一是识别元音音素。本文介绍了一种基于人工神经网络(ANN)的算法,该算法用于从包含这些元音的某些单词中分割和识别阿萨姆语的元音音素。经过多次迭代训练的自组织映射(SOM)用于将单词分割成其组成的音素。之后,使用经过训练的干净神经元音素的概率神经网络(PNN)从六个不同的SOM分段音素中识别元音片段。所提出算法的重要方面之一是它通过检查其第一共振峰频率来证明已识别的元音的有效性。通过从声道的线性预测(LP)模型估计极点或共振峰位置,可以预先确定所有阿萨姆语元音的第一共振峰频率。与传统的基于离散小波变换(DWT)的分割相比,该算法显示出较高的识别性能。

著录项

  • 来源
    《Applied computational intelligence and soft computing》 |2012年第2012期|871324.1-871324.8|共8页
  • 作者单位

    Department of Electronics and Communication Technology, Gauhati University, Assam, Guwahati 781014, India;

    Department of Electronics and Communication Technology, Gauhati University, Assam, Guwahati 781014, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号