首页> 外文期刊>Applied computational intelligence and soft computing >Four Machine Learning Algorithms for Biometrics Fusion: A Comparative Study
【24h】

Four Machine Learning Algorithms for Biometrics Fusion: A Comparative Study

机译:四种用于生物识别融合的机器学习算法:对比研究

获取原文
获取原文并翻译 | 示例

摘要

We examine the efficiency of four machine learning algorithms for the fusion of several biometrics modalities to create a multimodal biometrics security system. The algorithms examined are Gaussian Mixture Models (GMMs), Artificial Neural Networks (ANNs), Fuzzy Expert Systems (FESs), and Support Vector Machines (SVMs). The fusion of biometrics leads to security systems that exhibit higher recognition rates and lower false alarms compared to unimodal biometric security systems. Supervised learning was carried out using a number of patterns from a well-known benchmark biometrics database, and the validation/testing took place with patterns from the same database which were not included in the training dataset. The comparison of the algorithms reveals that the biometrics fusion system is superior to the original unimodal systems and also other fusion schemes found in the literature.
机译:我们研究了四种机器学习算法对几种生物特征识别方法融合以创建多模式生物特征识别安全系统的效率。检查的算法是高斯混合模型(GMM),人工神经网络(ANN),模糊专家系统(FES)和支持向量机(SVM)。与单峰生物特征安全系统相比,生物特征的融合导致安全系统具有更高的识别率和更低的误报。监督学习是使用来自著名基准生物统计数据库的许多模式进行的,并且验证/测试是使用同一数据库中未包含在训练数据集中的模式进行的。算法的比较表明,生物识别融合系统优于原始的单峰系统以及文献中发现的其他融合方案。

著录项

  • 来源
    《Applied computational intelligence and soft computing》 |2012年第2012期|242401.1-242401.7|共7页
  • 作者单位

    Informatics and Telematics Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece;

    Informatics and Telematics Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号