首页> 外文期刊>Applied computational intelligence and soft computing >Opinion Mining from Online User Reviews Using Fuzzy Linguistic Hedges
【24h】

Opinion Mining from Online User Reviews Using Fuzzy Linguistic Hedges

机译:使用模糊语言树篱从在线用户评论中挖掘意见

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, there are several websites that allow customers to buy and post reviews of purchased products, which results in incremental accumulation of a lot of reviews written in natural language. Moreover, conversance with E-commerce and social media has raised the level of sophistication of online shoppers and it is common practice for them to compare competing brands of products before making a purchase. Prevailing factors such as availability of online reviews and raised end-user expectations have motivated the development of opinion mining systems that can automatically classify and summarize users' reviews. This paper proposes an opinion mining system that can be used for both binary and fine-grained sentiment classifications of user reviews. Feature-based sentiment classification is a multistep process that involves preprocessing to remove noise, extraction of features and corresponding descriptors, and tagging their polarity. The proposed technique extends the feature-based classification approach to incorporate the effect of various linguistic hedges by using fuzzy functions to emulate the effect of modifiers, concentrators, and dilators. Empirical studies indicate that the proposed system can perform reliable sentiment classification at various levels of granularity with high average accuracy of 89% for binary classification and 86% for fine-grained classification.
机译:如今,有几个网站允许客户购买和发布购买产品的评论,从而导致大量以自然语言编写的评论逐渐积累。此外,与电子商务和社交媒体的交流提高了在线购物者的复杂程度,这是他们在购买商品之前先比较竞争品牌产品的一种普遍做法。诸如在线评论的可用性和最终用户期望的提高等普遍因素促使人们开发能够自动分类和总结用户评论的意见挖掘系统。本文提出了一种意见挖掘系统,该系统可用于用户评论的二进制和细粒度的情感分类。基于特征的情感分类是一个多步骤过程,涉及预处理以去除噪声,提取特征和相应的描述符以及标记其极性。所提出的技术扩展了基于特征的分类方法,以通过使用模糊函数来模拟修饰符,集中器和扩张器的效果来合并各种语言树篱的效果。实证研究表明,所提出的系统可以在各种粒度级别上执行可靠的情感分类,其中二进制分类的平均平均准确率高达89%,而细粒度分类的平均准确率则高达86%。

著录项

  • 来源
    《Applied computational intelligence and soft computing》 |2014年第2014期|735942.1-735942.9|共9页
  • 作者单位

    Information Technology Department, Sarvajanik College of Engineering & Technology, Surat 395001, India;

    Computer Engineering Department, S. V. National Institute of Technology, Surat 395007, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号