首页> 外文期刊>Applied computational intelligence and soft computing >Script Identification from Printed Indian Document Images and Performance Evaluation Using Different Classifiers
【24h】

Script Identification from Printed Indian Document Images and Performance Evaluation Using Different Classifiers

机译:从印刷的印度文档图像中识别脚本并使用不同的分类器评估性能

获取原文
获取原文并翻译 | 示例

摘要

Identification of script from document images is an active area of research under document image processing for a multilingual/ multiscript country like India. In this paper the real life problem of printed script identification from official Indian document images is considered and performances of different well-known classifiers are evaluated. Two important evaluating parameters, namely, AAR (average accuracy rate) and MBT (model building time), are computed for this performance analysis. Experiment was carried out on 459 printed document images with 5-fold cross-validation. Simple Logistic model shows highest AAR of 98.9% among all. BayesNet and Random Forest model have average accuracy rate of 96.7% and 98.2% correspondingly with lowest MBT of 0.09 s.
机译:在像印度这样的多语言/多脚本国家,从文档图像中识别脚本是文档图像处理下的一个活跃研究领域。在本文中,考虑了从印度官方文件图像中识别印刷脚本的现实问题,并评估了各种知名分类器的性能。为此性能分析计算了两个重要的评估参数,即AAR(平均准确率)和MBT(模型构建时间)。实验对459个具有5倍交叉验证的打印文档图像进行了实验。简单逻辑模型显示最高的AAR为98.9%。 BayesNet和随机森林模型的平均准确率分别为96.7%和98.2%,最低MBT为0.09 s。

著录项

  • 来源
    《Applied computational intelligence and soft computing》 |2014年第2014期|896128.1-896128.12|共12页
  • 作者单位

    Department of Computer Science & Engineering, Aliah University, Kolkata, India;

    Department of Computer Science, West Bengal State University, Barasat, India;

    Department of Computer Science & Engineering, Jadavpur University, Kolkata, India;

    Department of Computer Science, West Bengal State University, Barasat, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号