首页> 外文期刊>Applied computational intelligence and soft computing >A Novel Homogenous Hybridization Scheme for Performance Improvement of Support Vector Machines Regression in Reservoir Characterization
【24h】

A Novel Homogenous Hybridization Scheme for Performance Improvement of Support Vector Machines Regression in Reservoir Characterization

机译:一种新的均质杂交方案,用于改进油藏特征的支持向量机回归性能

获取原文
获取原文并翻译 | 示例

摘要

Hybrid computational intelligence is defined as a combination of multiple intelligent algorithms such that the resulting model has superior performance to the individual algorithms. Therefore, the importance of fusing two or more intelligent algorithms to achieve better performance cannot be overemphasized. In this work, a novel homogenous hybridization scheme is proposed for the improvement of the generalization and predictive ability of support vector machines regression (SVR). The proposed and developed hybrid SVR (HSVR) works by considering the initial SVR prediction as a feature extraction process and then employs the SVR output, which is the extracted feature, as its sole descriptor. The developed hybrid model is applied to the prediction of reservoir permeability and the predicted permeability is compared to core permeability which is regarded as standard in petroleum industry. The results show that the proposed hybrid scheme (HSVR) performed better than the existing SVR in both generalization and prediction ability. The outcome of this research will assist petroleum engineers to effectively predict permeability of carbonate reservoirs with higher degree of accuracy and will invariably lead to better reservoir. Furthermore, the encouraging performance of this hybrid will serve as impetus for further exploring homogenous hybrid system.
机译:混合计算智能定义为多种智能算法的组合,因此生成的模型具有优于单个算法的性能。因此,不能过分强调融合两个或更多智能算法以获得更好性能的重要性。在这项工作中,提出了一种新颖的同质杂交方案,以提高支持向量机回归(SVR)的泛化和预测能力。提出并开发的混合SVR(HSVR)通过将初始SVR预测视为特征提取过程,然后将作为提取特征的SVR输出用作其唯一描述符来工作。将开发的混合模型应用于储层渗透率预测,并将预测的渗透率与岩心渗透率进行比较,岩心渗透率被视为石油工业的标准。结果表明,提出的混合方案(HSVR)在泛化和预测能力上均优于现有的SVR。这项研究的结果将帮助石油工程师以更高的准确度有效地预测碳酸盐岩储层的渗透率,并始终带来更好的储层。此外,这种混合动力汽车令人鼓舞的性能将为进一步探索同质混合动力系统提供动力。

著录项

  • 来源
  • 作者单位

    Electrical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;

    Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia,Physics and Electronics Department, Adekunle Ajasin University, Akungba Akoko 342111, Ondo State, Nigeria;

    Computer Science Department, University of Dammam, Dammam, Saudi Arabia;

    Petroleum Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号