首页> 外文期刊>Applications of Mathematics >A REAL-VALUED BLOCK CONJUGATE GRADIENT TYPE METHOD FOR SOLVING COMPLEX SYMMETRIC LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES
【24h】

A REAL-VALUED BLOCK CONJUGATE GRADIENT TYPE METHOD FOR SOLVING COMPLEX SYMMETRIC LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES

机译:具有多个右侧的复杂对称线性系统的实值块共轭梯度型方法

获取原文
获取原文并翻译 | 示例

摘要

We consider solving complex symmetric linear systems with multiple right-hand sides. We assume that the coefficient matrix has indefinite real part and positive definite imaginary part. We propose a new block conjugate gradient type method based on the Schur complement of a certain 2-by-2 real block form. The algorithm of the proposed method consists of building blocks that involve only real arithmetic with real symmetric matrices of the original size. We also present the convergence property of the proposed method and an efficient algorithmic implementation. In numerical experiments, we compare our method to a complex-valued direct solver, and a preconditioned and nonpreconditioned block Krylov method that uses complex arithmetic.
机译:我们考虑求解具有多个右侧的复杂对称线性系统。我们假设系数矩阵具有不定的实部和正的定虚部。我们提出了一种基于某些2×2实块形式的Schur补的新的块共轭梯度类型方法。所提出方法的算法由仅涉及具有原始大小的实对称矩阵的实算法的构造块组成。我们还介绍了所提出方法的收敛性和有效的算法实现。在数值实验中,我们将我们的方法与复值直接求解器以及使用复数算法的预处理和非预处理块Krylov方法进行了比较。

著录项

  • 来源
    《Applications of Mathematics》 |2017年第4期|333-355|共23页
  • 作者单位

    Univ Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan;

    Univ Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan;

    Univ Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan;

    Univ Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号