首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Efficient Computation of the 2-D Green's Function for 1-D Periodic Structures Using the Ewald Method
【24h】

Efficient Computation of the 2-D Green's Function for 1-D Periodic Structures Using the Ewald Method

机译:使用Ewald方法对一维周期结构的二维格林函数进行有效计算

获取原文
获取原文并翻译 | 示例

摘要

The Ewald method is applied to accelerate the evaluation of the Green's function of an infinite periodic phased array of line sources. The Ewald representation for a cylindrical wave is obtained from the known representation for the spherical wave, and a systematic general procedure is applied to extend previous results. Only a few terms are needed to evaluate Ewald sums, which are cast in terms of error functions and exponential integrals, to high accuracy. Singularities and convergence rates are analyzed, and a recipe for selecting the Ewald splitting parameter epsilon is given to handle both low and high frequency ranges. Indeed, it is shown analytically that the choice of the standard optimal splitting parameter (epsilon)_(0) will cause overflow errors at high frequencies. Numerical examples illustrate the results and the sensitivity of the Ewald representation to the splitting parameter epsilon.
机译:Ewald方法用于加速对线源的无限周期性相控阵列的格林函数的评估。圆柱波的Ewald表示是从球形波的已知表示中获得的,并应用了系统的通用过程来扩展先前的结果。只需几项即可评估Ewald和,这些Ewald和根据误差函数和指数积分的形式具有很高的精度。分析奇异性和收敛速度,并给出了选择Ewald分裂参数epsilon的方法来处理低频和高频范围。实际上,通过分析表明,选择标准最佳分离参数ε_(0)会在高频下引起溢出错误。数值算例说明了Ewald表示的结果以及对分裂参数epsilon的敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号