首页> 外文期刊>Analytical Chemistry >Charge Detector for the Measurement of Ionic Solutes
【24h】

Charge Detector for the Measurement of Ionic Solutes

机译:用于离子溶质测量的电荷检测器

获取原文
获取原文并翻译 | 示例
       

摘要

We describe a flow-through ionic charge detector in thenform of a three-compartmented system. A central waternchannel is separated from two outer channels bearingnwater (or a dilute electrolyte) by a cation-exchange membranen(CEM) and an anion-exchange membrane (AEM).nIndependent fluid input/output ports address all channels.nOne platinum electrode is put in each outer channel.nWhen the AEM-side electrode is positive with respect tonthe CEM-side electrode and voltage (∼1-10 V) is applied,nthe observed background current is from the transportnof H+/OH- through the CEM/AEM to the negativepositive electrodes, respectively. The H+ and OH- arengenerated by the ionization of water, in part aided bynthe electric field. If an electrolyte (X+Y-) is injected innto the central channel, X+ and Y- migrate through thenCEM and AEM to the negative and positive electrodes,nrespectively, and generate a current pulse. The integratednarea of the current signal (coulombs) elicitednby this electrolyte injection is dependent on a numbernof variables, the most important being the centralnchannel residence time and the applied voltage (Vapp);nthese govern the transport of the injected electrolytento/through the membranes. Other parameters includenelectrode placement, fluid composition, and outernchannel flow rates. For strong electrolytes, dependingnon the operating conditions, the current peak arean(hereinafter called the measured charge signal, Qm)ncan both be less or more than the charge representednby the electrolyte injected (Qi). Qm is less than Qi ifntransport to/through the membranes is subquantitative.nQm can be greater than Qi at higher Vapp. Atnconstant Vapp more voltage is dropped across thenmembranes as the central channel becomes morenconductive and water dissociation at the membranensurface is enhanced. Effectively, the membranes experiencena greater applied voltage as the central channelnbecomes more conductive. The resulting additionalncurrent accompanying analyte introduction to thendetector can substantially augment Qm. Thus, thendevice is not an absolute coulometer although Vapp cannbe deliberately chosen to have Qm ) Qi over at least an10-fold concentration range. Importantly, equivalentnamounts of diverse strong electrolytes (with substantiallyndifferent conductivities) injected into the centralnchannel produce the same charge signals. In ion chromatography,nthis results in identical calibration curvesnfor all strong acid anions, obviating individual calibrations.nWhereas with a conductivity detector (CD) onlynthe ionized portion of a weak electrolyte responds, innthe present charge detector (ChD), ions are actuallynremoved, leading to further ionization and the detectionnof a proportionately greater analyte amount.
机译:我们描述了一种三室系统形式的流通式离子电荷检测器。中央水通道通过阳离子交换膜(CEM)和阴离子交换膜(AEM)与两个载有水(或稀电解质)的外部通道隔开。n独立的流体输入/输出端口指向所有通道。n放置一个铂电极n当AEM侧电极相对于CEM侧电极为正并施加电压(〜1-10 V)时,观察到的背景电流是从H + / OH-通过CEM / AEM到负/正电极。 H +和OH-是通过水的电离产生的,部分是由电场产生的。如果将电解质(X + Y-)注入到中央通道中,则X +和Y-分别通过CEM和AEM迁移到负极和正极,并产生电流脉冲。电解液注入所引起的电流信号积分值(库仑)取决于许多变量,最重要的是中央通道停留时间和施加的电压(Vapp);这些决定着注入的电解液向/通过膜的传输。其他参数包括电极位置,流体成分和外部通道流速。对于强电解质,取决于操作条件,电流峰面积(以下称为测得的电荷信号Qm)n都可以小于或大于注入的电解质所表示的电荷(Qi)。如果n传递至膜/通过膜,则Qm小于Qi。在较高的Vapp下,nQm可以大于Qi。当中心通道变得更导电且膜表面的水离解增强时,Vapp常数Vapp越多,跨膜压降越大。有效地,随着中央通道变得更导电,膜经历更大的施加电压。随之而来的伴随分析物引入检测器的额外电流会大大提高Qm。因此,尽管不能故意选择Vapp在至少10倍的浓度范围内具有Qm Qi,但该设备并不是绝对库仑计。重要的是,注入到中心通道中的当量不同的强电解质(电导率基本不同)会产生相同的电荷信号。在离子色谱中,这将对所有强酸阴离子产生相同的校准曲线,从而避免了单独的校准。n使用电导检测器(CD)时,弱电解质的离子化部分才响应,而在当前的电荷检测器(ChD)中,离子实际上未被去除,导致进一步电离,并检测出更大比例的分析物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号