首页> 外文期刊>Analytical Chemistry >Using ac-Field-Induced Electro-osmosis to Accelerate Biomolecular Binding in Fiber-Optic Sensing Chips with Microstructures
【24h】

Using ac-Field-Induced Electro-osmosis to Accelerate Biomolecular Binding in Fiber-Optic Sensing Chips with Microstructures

机译:使用交流电场诱导电渗加速具有微结构的光纤传感芯片中的生物分子结合

获取原文
获取原文并翻译 | 示例
       

摘要

This article reports the use of ac-field-induced charges atnthe corners of microstructures on fiber-optic sensing chipsnto generate electro-osmotic vortex flows in flow cellnchannels that can accelerate solute binding on the fiber.nThe sensing chip made of a cyclic olefin copolymer COCnsubstrate contained a flow cell channel of dimensions 15nmm ×1mm× 1 mm. A partially unclad optical fiber wasnplaced within the channel. Relief-like strip structures ofn25-μm thickness fabricated on the channel bottom werenproduced with an injection-molding process. The externalnelectric field lines penetrating through the corners of thenplastic microstructures induce charges on the cornernsurfaces to build up electrical double layers. When a highfrequencynac field (∼100 kHz) is used to flip the fieldnpolarities quickly, neutralization of the induced chargencannot be accomplished. The electrical double layer isntherefore sustained. When absorbed charges in the doublenlayer are driven by the external field, electro-osmotic flowsnare generated. The unclad portion of the fiber was coatednwith biotin-functionalized gold nanoparticles. The streptavidinnsolution was filled in the channel from the feedingntube, and the ac field (∼50 V/cm) was subsequentlynturned on for 30 s. The ac-field-induced electro-osmoticnflows can accelerate solute transport in the sensingnchannel to enhance the binding kinetics of streptavidinnmolecules with biotin probes implanted on the goldnnanoparticle surface. As a result, the fiber-optic localizednplasmon resonance (FO-LPR) sensing signal becomesnsteady as soon as the external field is turned off. Inncontrast, the signal cannot reach steady state untiln200-300 s in a typical static sensing cell. A significantnreduction in the sensing response time is demonstrated.nThe binding assay of streptavidin with immobilized biotinnon gold nanoparticle-coated sensing fibers was validatednusing this mixing device. The detection limit for streptavidinnof ∼10-11 M is close to the reported valuesnobtained using static cells. Similarly, the sensingnresponse time of an orchid Odontoglossum ringspotnvirus (ORSV) sample was reduced from 1000 to 330 snwhen an external field was applied to mix the fluid forn60 s, even though the detection limit was maintained.
机译:本文报道了在光纤传感芯片上的微结构角处使用ac场感应电荷n在流通池通道中产生电渗涡流,可加速溶质在光纤上的结合。n由环状烯烃共聚物COCn基板制成的传感芯片包含尺寸为15nmm×1mm×1 mm的流通池通道。将部分未覆盖的光纤放置在通道内。通过注模工艺生产出在沟道底部制作的厚度为25μm的浮雕状条状结构。穿过塑料微结构角部的外部电场线会在角部表面感应电荷,从而形成双电层。当使用高频Nac场(〜100 kHz)快速翻转场极性时,无法实现感应电荷的中和。因此,不存在电双层。当双层层中吸收的电荷由外部电场驱动时,会产生电渗流。纤维的未包覆部分涂覆有生物素官能化的金纳米颗粒。将链霉亲和素溶液填充到进料管的通道中,随后将交流场(〜50 V / cm)打开30 s。交流电场诱导的电渗流可以加速传感通道中的溶质转运,从而增强链霉亲和素分子与金纳米颗粒表面植入的生物素探针的结合动力学。结果,一旦外部场关闭,光纤局域等离子体共振(FO-LPR)传感信号就变得不稳定。相反,在典型的静态传感单元中,直到200-300 s,信号才能达到稳定状态。使用该混合装置验证了链霉亲和素与固定化的生物素金纳米颗粒包覆的传感纤维的结合试验。链霉亲和素的检出限约为10-11 M,接近使用静态细胞获得的报告值。类似地,即使在保持检测限的情况下,应用外场混合液体60秒钟,兰花牙牙周环病毒(ORSV)样品的传感响应时间也从1000减少到330 sn。

著录项

  • 来源
    《Analytical Chemistry》 |2010年第3期|p.1123-1127|共5页
  • 作者单位

    Departments of Chemistry and Biochemistry and Mechanical Engineering and Center for Nano Bio-Detection,National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 621, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:36:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号