...
首页> 外文期刊>American Chemical Society, Division of Fuel Chemistry, Preprints >MULTIFUNCTIONAL METAL-ORGANIC FRAMEWORKS FOR NEXT-GENERATION DYE SENSITIZED SOLAR CELLS
【24h】

MULTIFUNCTIONAL METAL-ORGANIC FRAMEWORKS FOR NEXT-GENERATION DYE SENSITIZED SOLAR CELLS

机译:用于下一代染料敏化太阳能电池的多功能金属有机框架

获取原文
获取原文并翻译 | 示例

摘要

Dye-sensitized solar cells (DSSC) comprised of organic lightharvestingrnmolecules bound to mesoporous titanium dioxide havernachieved remarkably high power conversion efficiencies in recentrnyears. The high PCE results from separating light absorption,rnelectron transport, and hole transport to individual materials andrnindependently optimizing these materials. Consequently, the DSSCrnarchitecture enables individual components to be independentlyrnoptimized to a greater extent than bulk heterojunction (BHJ) designs.rnIt is also relatively free of morphology- and microstructure-drivenrneffects that plague BHJ solar cells. Nevertheless, efficiencies ≥20%rnwill likely be necessary to reach the 2020 $1/W installed cost set byrnthe U.S. DOE, driving continued research aimed at discovering newrnmaterials. Improving light harvesting by extending dye absorptionrninto the near infrared (800 – 1000 nm), increasing the open-circuitrnvoltage by reducing overpotentials associated with dye regenerationrnand charge injection, and minimizing charge recombination arernstrategies likely to have the greatest impact on improving the PCE.1rnMetal-Organic Frameworks (MOFs), which are crystallinernsupramolecular materials,offer a level of synthetic and structuralrnversatility unavailable in all other known light-harvesting materials.rnMoreover, these materials are nanoporous, creating newrnopportunities to control processes at the atomic, molecular, andrnmesoscales. This presentation will summarize our efforts to developrnboth fundamental understanding and practical synthetic approachesrnneeded to develop MOFs as a new class of DSSC materials.rnSpecifically, we are using non-empirically tuned long-rangerncorrected density functional theory (DFT) to compute electronicrnproperties (fundamental and optical gaps) of linkers with the aim ofrnextending light absorption onset to at least 900 nm. To enable thesernto be incorporated into devices, we are developing growth methodsrnfor depositing MOFs on DSSC electrodes and are focusing on thernSURMOFs class of MOF thin-film structures,4 which have tailorablern2D layered structures separated by “pillar” ligands. Atomic layerrndeposition (ALD) is being used to deposit conduction band offsetrnlayers and to enhance MOF nucleation and growth. Finally, we arernaddressing the challenges of integrating these novel materials intornDSSC devices and will discuss the fabrication of prototype devicesrnand their performance. Overall, our results represent encouragingrnprogress and suggest that expanding the realm of MOF applicationsrninto opto-electronic devices is an achievable goal.
机译:近年来,由染料敏化太阳能电池(DSSC)组成的有机光捕获分子与介孔二氧化钛结合,已经取得了非常高的功率转换效率。高PCE是由于将光吸收,电子传输和空穴传输分离到单个材料并独立地优化这些材料而产生的。因此,DSSC架构比块状异质结(BHJ)设计使单个组件的独立优化程度更高。它也相对没有困扰BHJ太阳能电池的形态和微观结构驱动效应。尽管如此,要达到美国能源部设定的2020年1美元/瓦的安装成本,可能有必要达到20%以上的效率,从而推动了旨在发现新材料的持续研究。通过将染料吸收范围扩展到近红外(800 – 1000 nm)来改善光收集,通过减少与染料再生和电荷注入相关的过电势来增加开路电压,并最小化可能对改善PCE产生最大影响的电荷重组策略。1rnMetal-有机骨架(MOFs)是结晶的超分子材料,提供了所有其他已知的光收集材料所不具备的合成和结构多功能性。此外,这些材料是纳米多孔的,创造了新的机会来控制原子,分子和介观尺度的过程。本演讲将总结我们为发展MOF作为一类新型DSSC材料而需要发展的基本知识和实用的合成方法。具体来说,我们正在使用非经验调谐的长距离校正密度泛函理论(DFT)来计算电子性质(基本和光学性质)。连接物的间隙),目的是将光吸收起始延伸至至少900 nm。为了使thesern能够集成到设备中,我们正在开发用于在DSSC电极上沉积MOF的生长方法,并专注于SURMOFs类的MOF薄膜结构4,该结构具有可定制的2D层状结构,被“柱状”配体隔开。原子层沉积(ALD)用于沉积导带偏置层并增强MOF成核和生长。最后,我们正在解决将这些新型材料集成到DSSC器件中的挑战,并将讨论原型器件的制造及其性能。总体而言,我们的结果代表了令人鼓舞的进展,并表明将MOF应用领域扩展到光电设备是可以实现的目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号