首页> 外文期刊>Algorithmica >Planar Feedback Vertex Set and Face Cover: Combinatorial Bounds and Subexponential Algorithms
【24h】

Planar Feedback Vertex Set and Face Cover: Combinatorial Bounds and Subexponential Algorithms

机译:平面反馈顶点集和面覆盖:组合边界和次指数算法

获取原文
获取原文并翻译 | 示例

摘要

The Planar Feedback Vertex Set problem asks whether an n-vertex planar graph contains at most k vertices meeting all its cycles. The Face Cover problem asks whether all vertices of a plane graph G lie on the boundary of at most k faces of G. Standard techniques from parameterized algorithm design indicate that both problems can be solved by sub-exponential parameterized algorithms (where k is the parameter). In this paper we improve the algorithmic analysis of both problems by proving a series of combinatorial results relating the branchwidth of planar graphs with their face cover. Combining this fact with duality properties of branchwidth, allows us to derive analogous results on feedback vertex set. As a consequence, it follows that Planar Feedback Vertex Set and Face Cover can be solved in O(2~(15.11.√k) +n~2) and 0(2~(10.1.√k)+ n~2) steps, respectively.
机译:平面反馈顶点集问题询问一个n顶点平面图是否最多包含满足其所有周期的k个顶点。面覆盖问题询问平面图G的所有顶点是否都位于G的最多k个面的边界上。参数化算法设计的标准技术表明,这两个问题都可以用次指数参数化算法解决(其中k是参数)。在本文中,我们通过证明一系列将平面图的分支宽度与其平面图相关联的组合结果,改进了对这两个问题的算法分析。将这一事实与分支宽度的对偶属性相结合,可以使我们在反馈顶点集上得出相似的结果。结果,可以以O(2〜(15.11.√k)+ n〜2)和0(2〜(10.1.√k)+ n〜2)的步长求解平面反馈顶点集和面覆盖, 分别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号