首页> 外文期刊>Algorithmica >Linear-Time Algorithms for Hole-free Rectilinear Proportional Contact Graph Representations
【24h】

Linear-Time Algorithms for Hole-free Rectilinear Proportional Contact Graph Representations

机译:无孔直线比例接触图表示的线性时间算法

获取原文
获取原文并翻译 | 示例

摘要

Abstract In a proportional contact representation of a planar graph, each vertex is represented by a simple polygon with area proportional to a given weight, and edges are represented by adjacencies between the corresponding pairs of polygons. In this paper we first study proportional contact representations that use rectilinear polygons without wasted areas (white space). In this setting, the best known algorithm for proportional contact representation of a maximal planar graph uses 12-sided rectilinear polygons and takes O(n log n) time. We describe a new algorithm that guarantees 10-sided rectilinear polygons and runs in O(n) time. We also describe a linear-time algorithm for proportional contact representation of planar 3-trees with 8-sided rectilinear polygons and show that this is optimal, as there exist planar 3-trees that require 8-sided polygons. We then show that a maximal outer-planar graph admits a proportional contact representation using rectilinear polygons with 6 sides when the outer-boundary is a rectangle and with 4 sides otherwise. Finally we study maximal series-parallel graphs. Here we show that O(l)-sided rectilinear polygons are not possible unless we allow holes, but 6-sided polygons can be achieved with arbitrarily small holes.
机译:摘要在平面图的比例接触表示中,每个顶点由面积与给定权重成比例的简单多边形表示,而边由相应的多边形对之间的邻接表示。在本文中,我们首先研究使用不浪费区域(空白区域)的直线多边形的比例接触表示。在这种情况下,用于最大平面图的比例接触表示的最著名算法使用12边的直线多边形,并花费O(n log n)时间。我们描述了一种新算法,该算法可保证10边直线多边形并在O(n)时间内运行。我们还描述了一种线性时间算法,用于具有8边直线多边形的平面3树的比例接触表示,并表明这是最佳的,因为存在需要8边多边形的平面3树。然后,我们表明,当外边界为矩形时,最大的外平面图使用具有6个边的直线多边形接受比例接触表示,否则以4个边为准。最后,我们研究最大串联-平行图。在这里,我们表明,除非允许有孔,否则O(l)面的直线多边形是不可能的,但是可以使用任意小的孔来实现6面的多边形。

著录项

  • 来源
    《Algorithmica》 |2013年第1期|3-22|共20页
  • 作者单位

    Department of Computer Science, University of Arizona, Tucson, AZ, USA;

    David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada;

    Institut fuer Mathematik, Technische Universitat Berlin, Berlin, Germany;

    Wilhelm-Schickhard-Institut fuer Informatik, Tubingen Universitat, Tubingen, Germany;

    Wilhelm-Schickhard-Institut fuer Informatik, Tubingen Universitat, Tubingen, Germany;

    Department of Computer Science, University of Arizona, Tucson, AZ, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Graph drawing; Contact representation; Cartogram; Planar graph; Polygon;

    机译:图表;联系人表示;图表;平面图;多边形;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号