首页> 外文期刊>Algorithmica >Improved Approximation Algorithms for the Maximum Happy Vertices and Edges Problems
【24h】

Improved Approximation Algorithms for the Maximum Happy Vertices and Edges Problems

机译:最大快乐顶点和边问题的改进的近似算法

获取原文
获取原文并翻译 | 示例

摘要

Abstract The Maximum Happy Vertices (MHV) problem and the Maximum Happy Edges (MHE) problem are two fundamental problems arising in the study of the homophyly phenomenon in large scale networks. Both of these two problems are NP-hard. Interestingly, the MHE problem is a natural generalization of Multiway Uncut, the complement of the classic Multiway Cut problem. In this paper, we present new approximation algorithms for MHV and MHE based on randomized LP-rounding technique and non-uniform approach. Specifically, we show that MHV can be approximated within $$frac{1}{varDelta +1/g(varDelta )}$$ 1 Δ + 1 / g ( Δ ) , where $$varDelta $$ Δ is the maximum vertex degree and $$g(varDelta ) = (sqrt{varDelta } + sqrt{varDelta +1})^2 varDelta $$ g ( Δ ) = ( Δ + Δ + 1 ) 2 Δ , and MHE can be approximated within $$frac{1}{2} + frac{sqrt{2}}{4}f(k) ge 0.8535$$ 1 2 + 2 4 f ( k ) ≥ 0.8535 , where $$f(k) ge 1$$ f ( k ) ≥ 1 is a function of the color number k . These results improve over the previous approximation ratios for MHV, MHE as well as Multiway Uncut in the literature.
机译:摘要最大快乐顶点(MHV)问题和最大快乐边缘(MHE)问题是研究大型网络同构现象的两个基本问题。这两个问题都是NP难题。有趣的是,MHE问题是Multiway Uncut的自然概括,它是经典Multiway Cut问题的补充。在本文中,我们提出了基于随机LP舍入技术和非均匀方法的MHV和MHE的新近似算法。具体来说,我们显示MHV可以在$$ frac {1} {varDelta + 1 / g(varDelta)} $$ 1Δ+1 / g(Δ)内近似,其中$$ varDelta $$Δ是最大顶点度和$$ g(varDelta)=(sqrt {varDelta} + sqrt {varDelta +1})^ 2 varDelta $$ g(Δ)=(Δ+Δ+ 1)2Δ,并且MHE可以在$$ frac内近似{1} {2} + frac {sqrt {2}} {4} f(k)ge 0.8535 $$ 1 2 + 2 4 f(k)≥0.8535,其中$$ f(k)ge 1 $$ f( k)≥1是色数k的函数。这些结果比以前的MHV,MHE和Multiway Uncut的近似比率有所提高。

著录项

  • 来源
    《Algorithmica》 |2018年第5期|1412-1438|共27页
  • 作者单位

    School of Computer Science and Technology, Shandong University;

    Department of Computing Science, University of Alberta;

    Department of Computer Science and Engineering, University of California,MOE Key Lab of Bioinformatics and Bioinformatics Division, TNLIST/Department of Computer Science and Technology, Tsinghua University;

    State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences;

    Department of Computing Science, University of Alberta;

    Department of Systems Design and Informatics, Kyushu Institute of Technology;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Maximum Happy Vertices; Maximum Happy Edges; Approximation algorithm; Randomized rounding; Network homophyly;

    机译:最大快乐顶点;最大快乐边缘;近似算法;随机化舍入;网络同形;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号