首页> 外文期刊>Aerospace science and technology >Limit cycle oscillation control of wing with static output feedback control method
【24h】

Limit cycle oscillation control of wing with static output feedback control method

机译:机翼极限循环振荡控制的静态输出反馈控制方法

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a static output feedback controller (SOFC) for aeroelastic control of a cantilevered rectangular wing in low subsonic flow. For this purpose, an optimal formulation of this control method is developed, and a solution method is proposed for the related matrix equation. This optimal solution is obtained by solving combined Lyapunov and Riccati equations. At first these equations are transformed into a set of nonlinear algebraic equations and then are solved with iterative Newton-Raphson's method. This solution method is applicable to the full state feedback case. The controller is designed to extend flutter boundary and suppress limit cycle oscillation (LCO) of a low aspect ratio rectangular nonlinear structural wing. This structural nonlinearity is given by Von Karman plate theory. Both full and reduced order aerodynamic models are examined based on the modified vortex lattice theory. Results show combination of SOFC with reduced order aerodynamic model would be an effective choice for aeroelastic stabilization, and this controller has a very comparable result with linear quadratic regulator (LOR).
机译:本文提出了一种静态输出反馈控制器(SOFC),用于在低亚音速流中对悬臂矩形机翼进行气动弹性控制。为此,开发了该控制方法的最优公式,并提出了相关矩阵方程的求解方法。通过求解组合的Lyapunov和Riccati方程可获得最佳解。首先,将这些方程转换为一组非线性代数方程,然后使用牛顿-拉夫森迭代法进行求解。该解决方案方法适用于全状态反馈情况。该控制器设计用于扩展颤振边界并抑制低纵横比的矩形非线性结构机翼的极限循环振荡(LCO)。冯卡曼板理论给出了这种结构非线性。基于改进的涡流格子理论,对全空气动力学模型和降阶空气动力学模型进行了研究。结果表明,将SOFC与降阶空气动力学模型相结合将是进行气动弹性稳定的有效选择,并且该控制器与线性二次调节器(LOR)的结果非常相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号