首页> 外文期刊>Aerospace science and technology >Geometry optimization of the diffuser for the supersonic wind tunnel using genetic algorithm and adaptive mesh refinement technique
【24h】

Geometry optimization of the diffuser for the supersonic wind tunnel using genetic algorithm and adaptive mesh refinement technique

机译:基于遗传算法和自适应网格细化技术的超音速风洞扩压器几何优化

获取原文
获取原文并翻译 | 示例
       

摘要

Design of two-dimensional supersonic diffusers as a part of the wind tunnel is investigated in this paper. A methodology based on the mixture of try-and-error method and optimization algorithm is developed to handle the design problem. In the first design step, using try-and-error approach, the main parameters related to the geometry of diffuser such as length, angle and area ratio between the throat and the outlet are determined assuming a diffuser with linear walls. The design criterion in this step is the fact that the shock wave should be created near the diffuser throat in order to benefit from the maximum efficiency of diffuser. In the second design step, considering the optimization methodology, it is tried to improve the optimum design obtained in the first step by modifying the wall point locations and keeping the rest of the geometry fixed. Hence, an optimization problem is defined to find the best curve for the diffuser wall instead of the a linear one used the in the first step. The objective function of this problem is to minimize the output Mach number using Genetic Algorithm (GA). The fluid flow is evaluated using the Euler equations in the conservative form where the Streamline-Upwind/Petrov-Galerkin (SUPG) finite element scheme is used to discretize the flow equations. In order to capture the flow solution around the shock waves accurately, the adaptive mesh refinement technique is coupled to the flow solution. The demonstrated results show the efficiency of the proposed method for designing supersonic diffusers.
机译:本文研究了二维超音速扩散器作为风洞的一部分的设计。开发了一种基于试错法和优化算法相结合的方法论来解决设计问题。在第一个设计步骤中,使用试错法,在假设扩散器具有线性壁的情况下,确定与扩散器的几何形状相关的主要参数,例如长度,角度和喉咙与出口之间的面积比。此步骤中的设计标准是,应在扩压器喉部附近产生冲击波,以便受益于扩压器的最大效率。在第二个设计步骤中,考虑到优化方法,尝试通过修改壁点位置并保持其余几何形状固定来改进在第一步中获得的最佳设计。因此,定义了一个优化问题,以找到扩散器壁的最佳曲线,而不是第一步中使用的线性曲线。此问题的目标功能是使用遗传算法(GA)最小化输出马赫数。使用保守形式的Euler方程评估流体流动,其中使用Streamline-Upwind / Petrov-Galerkin(SUPG)有限元方案离散化流体方程。为了准确地捕获冲击波周围的流动解,将自适应网格细化技术与流动解耦合。证明的结果表明了所提出的设计超声扩散器的方法的效率。

著录项

  • 来源
    《Aerospace science and technology》 |2014年第7期|64-74|共11页
  • 作者单位

    Universitat Politecnica de Catalunya, Spain,International Center for Numerical Methods in Engineering (CIMNE), Spain;

    Malek-ashtar University of Technology, Shahln-shahr, Iran;

    Universitat Politecnica de Catalunya, Spain,International Center for Numerical Methods in Engineering (CIMNE), Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:32:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号