首页> 外文期刊>Aerosol Science and Technology >The Effect of Orientation on the Mobility and Dynamic Shape Factor of Charged Axially Symmetric Particles in an Electric Field
【24h】

The Effect of Orientation on the Mobility and Dynamic Shape Factor of Charged Axially Symmetric Particles in an Electric Field

机译:电场取向对带电轴对称粒子运动性和动态形状因子的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The mobility of a nonspherical particle is a function of both particle shape and orientation. Thus, unlike spherical particles, the mobility, through its orientation, depends on the magnitude of the electric field. In this work, we develop a general theory, based on an extension of the work of Happel and Brenner (1965), for the orientation-averaged mobility applicable to any axially symmetric particle for which the friction tensor and the polarization energy are known. By using a Boltzmann probability distribution for the orientation, we employ a tensor formulation for computing the orientation-averaged mobility rather than a scalar analysis previously employed by Kim et al. (2007) for nanowires. The resulting equation for the average electrical mobility is much simpler than the expression based on the scalar approach, and can be applied to any axially symmetric structures such as rods, ellipsoids, and touching spheres. The theory is applied to the specific case of nanowires and the experimental results on the mobility of carbon nanotubes (CNT). A set of working formulas of additional mobility expressions for nanorods and prolate spheroids in the free molecular, continuum, and transition regimes are also presented. Finally, we examine the expression of dynamic shape factor common in the literature, and propose a clearer definition based on the tensor approach. Mathematica codes for the electrical mobility evaluations for five cases are provided in the Supplemental Information.Copyright 2012 American Association for Aerosol ResearchView full textDownload full textRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/02786826.2012.686675
机译:非球形粒子的迁移率是粒子形状和方向的函数。因此,与球形颗粒不同,迁移率通过其取向取决于电场的大小。在这项工作中,我们基于Happel和Brenner(1965)的工作的扩展,发展了一种适用于任何轴向对称粒子(其摩擦张量和极化能量已知)的取向平均迁移率的通用理论。通过使用Boltzmann概率分布进行定向,我们采用张量公式来计算定向平均迁移率,而不是使用Kim等人先前进行的标量分析。 (2007)用于纳米线。所得的平均电迁移率方程比基于标量方法的表达式要简单得多,并且可以应用于任何轴向对称的结构,例如杆,椭球和接触球。该理论适用于纳米线的具体情况,以及关于碳纳米管(CNT)迁移率的实验结果。还提供了一组在自由分子,连续谱和过渡态中纳米棒和扁球体的额外迁移率表达式的工作公式。最后,我们研究了文献中常见的动态形状因子的表达,并基于张量方法提出了更清晰的定义。补充信息中提供了用于五种情况的电迁移率评估的Mathematica代码。版权所有2012美国气雾剂研究协会查看全文下载全文相关变量var addthis_config = {ui_cobrand:“泰勒和弗朗西斯在线”,service_compact:“ citeulike,netvibes,twitter, technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more“,发布:” ra-4dff56cd6bb1830b“};添加到候选列表链接永久链接http://dx.doi.org/10.1080/02786826.2012.686675

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号