首页> 外文期刊>Advanced Materials >Ultrafast Photoconductivity and Terahertz Vibrational Dynamics in Double-Helix SnIP Nanowires
【24h】

Ultrafast Photoconductivity and Terahertz Vibrational Dynamics in Double-Helix SnIP Nanowires

机译:双螺旋剪纸纳米线超快光电导性和太赫兹振动动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Tin iodide phosphide (SnIP), an inorganic double-helix material, is a quasi-1D van der Waals semiconductor that shows promise in photocatalysis and flexible electronics. However, the understanding of the fundamental photophysics and charge transport dynamics of this new material is limited. Here, time-resolved terahertz (THz) spectroscopy is used to probe the transient photoconductivity of SnIP nanowire films and measure the carrier mobility. With insight into the highly anisotropic electronic structure from quantum chemical calculations, an electron mobility as high as 280 cm(2) V(-1)s(-1) along the double-helix axis and a hole mobility of 238 cm(2) V-1 s(-1) perpendicular to the double-helix axis are detected. Additionally, infrared-active (IR-active) THz vibrational modes are measured, which shows excellent agreement with first-principles calculations, and an ultrafast photoexcitation-induced charge redistribution is observed that reduces the amplitude of a twisting mode of the outer SnI helix on picosecond timescales. Finally, it is shown that the carrier lifetime and mobility are limited by a trap density greater than 10(18) cm(-3). The results provide insight into the optical excitation and relaxation pathways of SnIP and demonstrate a remarkably high carrier mobility for such a soft and flexible material, suggesting that it could be ideally suited for flexible electronics applications.
机译:碘化锡磷化物(Snip),无机双螺旋材料,是拟1D范德瓦尔斯半导体,其显示在光催化和柔性电子器件中的承诺。然而,了解这款新材料的基本光学和电荷传输动态的理解有限。这里,时间分辨的太赫兹(THz)光谱法用于探测剪纳米线膜的瞬态光电导性并测量载流子迁移率。通过洞察量子化学计算的高度各向异性电子结构,沿着双螺旋轴的高达280cm(2)V(-1)(-1)的电子迁移率和238cm(2)的空穴迁移率检测垂直于双螺旋轴的V-1 S(-1)。另外,测量红外极光(IR-Active)THz振动模式,其显示出与第一原理计算的良好一致性,并且观察到超薄的光透射诱导的电荷再分布,这减少了外部SNI螺旋的扭曲模式的幅度PicoSecond Timescales。最后,示出了载体寿命和迁移率受大于10(18)厘米(-3)的陷阱密度的限制。结果提供了对剪切的光学激发和弛豫途径的洞察力,并证明了这种柔软和柔性材料的显着高载流动性,这表明它可以理想地适用于柔性电子产品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号