...
首页> 外文期刊>Advanced Materials >Solid Immersion Facilitates Fluorescence Microscopy with Nanometer Resolution and Sub-Angstrom Emitter Localization
【24h】

Solid Immersion Facilitates Fluorescence Microscopy with Nanometer Resolution and Sub-Angstrom Emitter Localization

机译:固体浸没有助于实现纳米级分辨率和亚埃发射极定位的荧光显微镜

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Standard far-field optical microscopy techniques provide non-invasive access to the interior of transparent samples, albeit with a resolution that is constrained to about half of the wavelength of light γ. By providing a resolution that is no longer limited by diffraction, emerging far-field optical nanoscopy or superresolution techniques are transforming the life sciences, but have also implications in the material and information sciences. Exemplifying the latter are concepts for quantum computation relying on point defects in a closely spaced crystal lattice forming coupled quantum systems. A candidate for such a system is the negatively charged nitrogen vacancy (NV) point defect in diamond, which consists of a lattice vacancy located next to a substitutional nitrogen. The NV center displays remarkable properties as a spin register, combining long coherence times at room temperature with convenient means for optical and microwave initialization followed by fluorescence-based read-out. Recent works have shown that the spin states of NV centers separated < 10 nm apart can communicate with each other on sub-microsecond time scales, which is sufficiently fast to envisage an array of entangled quantum systems as a crucial step towards a quantum processor.
机译:标准的远场光学显微镜技术可无创地进入透明样品的内部,尽管其分辨率限制在光γ波长的一半左右。通过提供不再受衍射限制的分辨率,新兴的远场光学纳米技术或超分辨率技术正在改变生命科学,但也对材料和信息科学产生影响。后者的例证是用于量子计算的概念,其依赖于形成耦合量子系统的紧密间隔的晶格中的点缺陷。这种系统的候选者是钻石中带负电荷的氮空位(NV)点缺陷,该缺陷由位于置换氮旁边的晶格空位组成。 NV中心作为自旋寄存器具有出色的性能,将室温下较长的相干时间与方便的方法进行光学和微波初始化,然后进行基于荧光的读出相结合。最近的工作表明,相距小于10 nm的NV中心的自旋状态可以在亚微秒级的时间尺度上相互通信,这足够快,可以想象成一个纠缠的量子系统阵列,这是迈向量子处理器的关键一步。

著录项

  • 来源
    《Advanced Materials》 |2012年第44期|OP309-OP313|共5页
  • 作者单位

    Department of NanoBiophotonics Max Planck Institut for Biophysical Chemistry Am Fassberg 11, 37077 Goettingen, Germany;

    Centre for Quantum Photonics Department of Electrical and Electronic Engineering&H. H. Wills Physics Laboratory University of Bristol Merchant Venturers Building Woodland Road, Bristol BS8 1UB, UK;

    Department of NanoBiophotonics Max Planck Institut for Biophysical Chemistry Am Fassberg 11, 37077 Goettingen, Germany;

    Centre for Quantum Photonics Department of Electrical and Electronic Engineering&H. H. Wills Physics Laboratory University of Bristol Merchant Venturers Building Woodland Road, Bristol BS8 1UB, UK;

    Centre for Quantum Photonics Department of Electrical and Electronic Engineering&H. H. Wills Physics Laboratory University of Bristol Merchant Venturers Building Woodland Road, Bristol BS8 1UB, UK;

    Centre for Quantum Photonics Department of Electrical and Electronic Engineering&H. H. Wills Physics Laboratory University of Bristol Merchant Venturers Building Woodland Road, Bristol BS8 1UB, UK;

    Department of NanoBiophotonics Max Planck Institut for Biophysical Chemistry Am Fassberg 11, 37077 Goettingen, Germany;

    Centre for Quantum Photonics Department of Electrical and Electronic Engineering&H. H. Wills Physics Laboratory University of Bristol Merchant Venturers Building Woodland Road, Bristol BS8 1UB, UK;

    Centre for Quantum Photonics Department of Electrical and Electronic Engineering&H. H. Wills Physics Laboratory University of Bristol Merchant Venturers Building Woodland Road, Bristol BS8 1UB, UK;

    Department of NanoBiophotonics Max Planck Institut for Biophysical Chemistry Am Fassberg 11, 37077 Goettingen, Germany;

    Department of Materials University of Oxford Parks Road, Oxford OX1 3PH, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号