首页> 外文期刊>Advanced Functional Materials >Electrical Behavior and Electron Transfer Modulation of Nickel-Copper Nanoalloys Confined in Nickel-Copper Nitrides Nanowires Array Encapsulated in Nitrogen-Doped Carbon Framework as Robust Bifunctional Electrocatalyst for Overall Water Splitting
【24h】

Electrical Behavior and Electron Transfer Modulation of Nickel-Copper Nanoalloys Confined in Nickel-Copper Nitrides Nanowires Array Encapsulated in Nitrogen-Doped Carbon Framework as Robust Bifunctional Electrocatalyst for Overall Water Splitting

机译:封闭在掺氮碳骨架中的铜镍氮化物纳米线阵列中的镍铜纳米合金的电学行为和电子转移调节,该鲁棒双功能电催化剂用于总水分解

获取原文
获取原文并翻译 | 示例
           

摘要

Probing robust electrocatalysts for overall water splitting is vital in energy conversion. However, the catalytic efficiency of reported catalysts is still limited by few active sites, low conductivity, and/or discrete electron transport. Herein, bimetallic nickel-copper (NiCu) nanoalloys confined in mesoporous nickel-copper nitride (NiCuN) nanowires array encapsulated in nitrogen-doped carbon (NC) framework (NC-NiCu-NiCuN) is constructed by carbonization-itridation-induced in situ growth strategies. The in situ coupling of NiCu nanoalloys, NiCuN, and carbon layers through dual modulation of electrical behavior and electron transfer is not only beneficial to continuous electron transfer throughout the whole system, but also promotes the enhancement of electrical conductivity and the accessibility of active sites. Owing to strong synergetic coupling effect, such NC-NiCu-NiCuN electrocatalyst exhibits the best hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance with a current density of 10 mA cm(-2) at low overpotentials of 93 mV for HER and 232 mV for OER, respectively. As expected, a two-electrode cell using NC-NiCu-NiCuN is constructed to deliver 10 mA cm(-2) water-splitting current at low cell voltage of 1.56 V with remarkable durability over 50 h. This work serves as a promising platform to explore the design and synthesis of robust bifunctional electrocatalyst for overall water splitting.
机译:探索用于整体水分解的强力电催化剂对于能量转换至关重要。但是,所报道的催化剂的催化效率仍然受到活性位少,电导率低和/或离散电子传输的限制。在此,通过碳化/氮化诱导的原位构造,将双金属镍铜(NiCu)纳米合金限制在氮掺杂碳(NC)骨架(NC-NiCu-NiCuN)中封装的介孔镍铜氮化物(NiCuN)纳米线阵列中。增长策略。通过电行为和电子转移的双重调制而实现的NiCu纳米合金,NiCuN和碳层的原位耦合不仅有利于整个系统的连续电子转移,而且还促进了电导率的提高和活性位点的可及性。由于强大的协同耦合作用,此类NC-NiCu-NiCuN电催化剂在93 mV的低过电势下表现出最佳的析氢反应(HER)和析氧反应(OER)性能,电流密度为10 mA cm(-2)。 HER和232 mV分别用于OER。如预期的那样,使用NC-NiCu-NiCuN的两电极电池可在1.56 V的低电池电压下提供10 mA cm(-2)的水分解电流,并在50小时内具有出色的耐久性。这项工作为探索用于整体水分解的稳健双功能电催化剂的设计和合成提供了一个有希望的平台。

著录项

  • 来源
    《Advanced Functional Materials》 |2018年第37期|1803278.1-1803278.8|共8页
  • 作者单位

    DUT, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China;

    DUT, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China;

    DUT, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China;

    DUT, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China;

    DUT, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China;

    DUT, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China;

    DUT, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China;

    DUT, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    bifunctional electrocatalysts; electrical behavior; electron transfer; nickel-copper nanoalloys; nickel-copper nitrides; nitrogen-doped carbon frameworks;

    机译:双功能电催化剂;电性能;电子转移;镍铜纳米合金;镍铜氮化物;氮掺杂碳骨架;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号