...
首页> 外文期刊>Advanced Functional Materials >Atomic Vacancy Control and Elemental Substitution in a Monolayer Molybdenum Disulfide for High Performance Optoelectronic Device Arrays
【24h】

Atomic Vacancy Control and Elemental Substitution in a Monolayer Molybdenum Disulfide for High Performance Optoelectronic Device Arrays

机译:高性能光电器件阵列中单层二硫化钼中的原子空位控制和元素取代

获取原文
获取原文并翻译 | 示例
           

摘要

Defect engineering of 2D transition metal dichalcogenides (TMDCs) is essential to modulate their optoelectrical functionalities, but there are only a few reports on defect-engineered TMDC device arrays. Herein, the atomic vacancy control and elemental substitution in a chemical vapor deposition (CVD)-grown molybdenum disulfide (MoS2) monolayer via mild photon irradiation under controlled atmospheres are reported. Raman spectroscopy, photoluminescence, X-ray, and ultraviolet photoelectron spectroscopy comprehensively demonstrate that the well-controlled photoactivation delicately modulates the sulfur-to-molybdenum ratio as well as the work function of a MoS2 monolayer. Furthermore, the atomic-resolution scanning transmission electron microscopy directly confirms that small portions (2-4 at% corresponding to the defect density of 4.6 x 10(12) to 9.2 x 10(13) cm(-2)) of sulfur vacancies and oxygen substituents are generated in the MoS2 while the overall atomic-scale structural integrity is well preserved. Electronic and optoelectronic device arrays are also realized using the defect-engineered CVD-grown MoS2, and it is further confirmed that the well-defined sulfur vacancies and oxygen substituents effectively give rise to the selective n- and p-doping in the MoS2, respectively, without the trade-off in device performance. In particular, low-percentage oxygen-doped MoS2 devices show outstanding optoelectrical performance, achieving a detectivity of approximate to 10(13) Jones and rise/decay times of 0.62 and 2.94 s, respectively.
机译:2D过渡金属二硫化碳(TMDC)的缺陷工程对调节其光电功能至关重要,但是关于缺陷工程TMDC器件阵列的报道很少。在此,报道了在受控气氛下通过温和的光子照射在化学气相沉积(CVD)生长的二硫化钼(MoS2)单层中进行原子空位控制和元素取代的过程。拉曼光谱,光致发光,X射线和紫外光电子能谱综合表明,控制良好的光活化可精细地调节硫钼比以及MoS2单层的功函。此外,原子分辨率扫描透射电子显微镜直接证实了硫空位和硫原子的小部分(2-4 at%对应于4.6 x 10(12)至9.2 x 10(13)cm(-2)的缺陷密度)和在MoS2中生成氧取代基,同时很好地保留了整体的原子级结构完整性。电子和光电子器件阵列也可以使用由缺陷设计的CVD生长的MoS2实现,并且进一步证实,明确定义的硫空位和氧取代基分别有效地引起MoS2中的选择性n掺杂和p掺杂,而无需权衡设备性能。特别是,低百分比的氧掺杂MoS2器件表现出出色的光电性能,实现了大约10(13)Jones的探测率和0.62和2.94 s的上升/下降时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号