首页> 外文期刊>Advanced Functional Materials >Discrete-Continuum Duality of Architected Materials: Failure, Flaws, and Fracture
【24h】

Discrete-Continuum Duality of Architected Materials: Failure, Flaws, and Fracture

机译:建筑材料的离散连续体二元性:破坏,缺陷和断裂

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

3D nano- and micro-architected materials are resilient under compression; their susceptibility to flaws and fracture remain unexplored. This work reports the fabrication and tensile-to-failure response of hollow alumina nanolattices arranged into 5 mu m octet-truss unit cells. Some specimens contained through-thickness center notches oriented at different angles to the loading direction, with a length-over-sample-width ratio of 0.45. In situ tensile experiments reveal that for all orientations, failure initiates at the notch root, followed by instantaneous crack propagation along lattice planes orthogonal to extension. A tensile strength of 27.4 +/- 0.7 MPa is highest for unnotched samples and decreases as notch orientation varies from 0 degrees to 90 degrees to its minimum, 7.2 +/- 0.4 MPa; their specific tensile strength is approximate to 4 x higher than that for all other low-density materials. Finite element simulations reproduce observed strengths and failure mechanisms: initial cracks always initiate at the nodal junctions with highest stress concentrations by tearing of alumina walls at the nodes. Subsequent crack propagation shifts maximum stress concentration to the nodes along lattice plane orthogonal to the loading direction. A modified analytical fracture model based on the effective notch length predicts tensile strengths consistent with experiments. These findings imply that continuum fracture mechanics can predict failure in nano-architected materials, which helps develop advanced materials through informed architectural design.
机译:3D纳米和微结构材料在压缩下具有弹性;他们对缺陷和断裂的敏感性尚待探索。这项工作报告了中空氧化铝纳米晶格排列成5微米八角形桁架晶胞的制造和拉伸至破坏的反应。一些样品的厚度中心缺口与装载方向的夹角不同,样品的长宽比为0.45。原位拉伸实验表明,对于所有方向,破坏都始于缺口的根部,然后沿垂直于延伸方向的晶格平面瞬时扩展裂纹。无缺口样品的抗拉强度最高,为27.4 +/- 0.7 MPa,而随着缺口方向从0度到90度变化至最小值7.2 +/- 0.4 MPa,抗拉强度会降低;其比抗张强度比所有其他低密度材料高约4倍。有限元模拟重现了观察到的强度和破坏机理:初始裂纹总是在节点处的氧化铝结壁撕裂时,在应力集中最高的节点处产生。随后的裂纹扩展将最大应力集中沿正交于加载方向的晶格平面转移到节点。基于有效缺口长度的改进的分析断裂模型可预测与实验一致的拉伸强度。这些发现表明,连续断裂力学可以预测纳米结构材料的失效,这有助于通过知情的建筑设计开发高级材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号