首页> 外文期刊>ACM transactions on database systems >Domain-Independent Data Cleaning via Analysis of Entity-Relationship Graph
【24h】

Domain-Independent Data Cleaning via Analysis of Entity-Relationship Graph

机译:通过分析实体关系图来进行与域无关的数据清理

获取原文

摘要

In this article, we address the problem of reference disambiguation. Specifically, we consider a situation where entities in the database are referred to using descriptions (e.g., a set of instantiated attributes). The objective of reference disambiguation is to identify the unique entity to which each description corresponds. The key difference between the approach we propose (called RELDC) and the traditional techniques is that RELDC analyzes not only object features but also inter-object relationships to improve the disambiguation quality. Our extensive experiments over two real data sets and over synthetic datasets show that analysis of relationships significantly improves quality of the result.
机译:在本文中,我们解决了引用歧义消除的问题。具体来说,我们考虑一种情况,其中使用描述(例如,一组实例化属性)来引用数据库中的实体。消除歧义的目的是识别每个描述所对应的唯一实体。我们提出的方法(称为RELDC)与传统技术之间的主要区别在于RELDC不仅分析对象特征,而且还分析对象之间的关系以提高消歧质量。我们对两个真实数据集和综合数据集进行的广泛实验表明,关系分析显着提高了结果的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号