首页> 外文期刊>ACM transactions on computational logic >A New Decidability Technique for Ground Term Rewriting Systems with Applications
【24h】

A New Decidability Technique for Ground Term Rewriting Systems with Applications

机译:地面术语重写系统的新可判定性技术及其应用

获取原文
获取原文并翻译 | 示例

摘要

Programming language interpreters, proving equations (e.g. x~3 = x implies the ring is Abelian), abstract data types, program transformation and optimization, and even computation itself (e.g., turing machine) can all be specified by a set of rules, called a rewrite system. Two fundamental properties of a rewrite system are the confluence or Church—Rosser property and the unique normalization property. In this article, we develop a standard form for ground rewrite systems and the concept of standard rewriting. These concepts are then used to: prove a pumping lemma for them, and to derive a new and direct decidability technique for decision problems of ground rewrite systems. To illustrate the usefulness of these concepts, we apply them to prove: (ⅰ) polynomial size bounds for witnesses to violations of unique normalization and confluence for ground rewrite systems containing unary symbols and constants, and (ⅱ) polynomial height bounds for witnesses to violations of unique normalization and confluence for arbitrary ground systems. Apart from the fact that our technique is direct in contrast to previous decidability results for both problems, which were indirectly obtained using tree automata techniques, this approach also yields tighter bounds for rewrite systems with unary symbols than the ones that can be derived with the indirect approach. Finally, as part of our results, we give a polynomial-time algorithm for checking whether a rewrite system has the unique normalization property for all subterms in the rules of the system.
机译:编程语言解释器,证明方程式(例如x〜3 = x表示环是Abelian),抽象数据类型,程序转换和优化,甚至计算本身(例如图灵机)都可以由一组规则指定,这些规则称为一个重写系统。重写系统的两个基本属性是合流或Church — Rosser属性和唯一规范化属性。在本文中,我们开发了用于地面重写系统的标准格式和标准重写的概念。然后将这些概念用于:证明它们的抽水引理,并为地面改写系统的决策问题推导新的直接决策性技术。为了说明这些概念的实用性,我们应用它们来证明:(ⅰ)证人的多项式大小界对包含一元符号和常量的地面改写系统的唯一规范化和合流的违反,以及(ⅱ)证人对违反行为的多项式高度界任意地面系统的独特归一化和融合。除了我们的技术与先前通过两个树的自动机技术间接获得的两个问题的可判定性结果相反的事实外,该方法还为一元符号的重写系统产生了比可间接获得的更严格的界限方法。最后,作为结果的一部分,我们提供了多项式时间算法来检查重写系统对于系统规则中的所有子项是否具有唯一的规范化属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号