首页> 外文期刊>Accounts of Chemical Research >Interplay between Theory and Experiment: Computational Organometallic and Transition Metal Chemistry
【24h】

Interplay between Theory and Experiment: Computational Organometallic and Transition Metal Chemistry

机译:理论与实验之间的相互作用:计算有机金属与过渡金属化学

获取原文
获取原文并翻译 | 示例
       

摘要

Computational and theoretical chemistry provide funda-nmental insights into the structures, properties, and reac-ntivities of molecules. As a result, theoretical calculations havenbecome indispensable in various fields of chemical researchnand development. In this Account, we present our researchnin the area of computational transition metal chemistry, usingnexamples to illustrate how theory impacts our understanding of experimental results and how close collaboration betweenntheoreticians and experimental chemists can be mutually beneficial.nWe begin by examining the use of computational chemistry to elucidate the details of some unusual chemical bonds.nWe consider the three-center, two-electron bonding in titanocene σ-borane complexes and the five-center, four-electron bond-ning in a rhodium bismuth complex. The bonding in metallabenzene complexes is also examined. In each case, theoreticalncalculations provide particular insight into the electronic structure of the chemical bonds.nWe then give an example of how theoretical calculations aided the structural determination of a κ2n-N,N chelate ruthe-nnium complex formed upon heating an intermediate benzonitrile-coordinated complex. An initial X-ray diffraction structurenproposed on the basis of a reasonable mechanism appeared to fit well, with an apparently acceptable R value of 0.0478.nBut when DFT calculations were applied, the optimized geometry differed significantly from the experimental data. By com-nbining experimental and theoretical outlooks, we posited a new structure. Remarkably, a re-refining of the X-ray diffrac-ntion data based on the new structure resulted in a slightly lower R value of 0.0453.nWe further examine the use of computational chemistry in providing new insight into C H bond activation mecha-nnisms and in understanding the reactivity properties of nucleophilic boryl ligands, addressing experimental difficulties withncalculations and vice versa. Finally, we consider the impact of theoretical insights in three very specific experimental stud-nies of chemical reactions, illustrating how theoretical results prompt further experimental studies: (i) diboration of alde-nhydes catalyzed by copper(I) boryl complexes, (ii) ruthenium-catalyzed C H amination of arylazides, and (iii) zinc reductionnof a vinylcarbyne complex.nThe concepts and examples presented here are intended for nonspecialists, particularly experimentalists. Together, theynillustrate some of the achievements that are possible with a fruitful union of experiment and theory.
机译:计算化学和理论化学为分子的结构,性质和反应性提供了基本的见识。结果,在化学研究和开发的各个领域中,理论计算已成为必不可少的。在本报告中,我们将以计算过渡金属化学领域为例,通过示例来说明理论如何影响我们对实验结果的理解,以及理论家和实验化学家之间的密切合作如何互利互惠。阐明一些异常化学键的细节。n我们考虑钛茂σ-硼烷络合物中的三中心,两个电子键和铑铋络合物中的五个中心,四个电子键。还研究了金属苯配合物中的键合。在每种情况下,理论计算都能提供对化学键电子结构的特别了解。然后我们举一个例子,说明理论计算如何帮助加热中间体苄腈配位形成的κ2n-N,N螯合钌-n配合物的结构。复杂。在合理的机理基础上提出的初始X射线衍射结构似乎拟合得很好,R值显然可以接受,为0.0478.n。但是,当采用DFT计算时,优化的几何形状与实验数据存在显着差异。通过结合实验和理论观点,我们提出了一个新的结构。值得注意的是,基于新结构对X射线衍射数据的重新定义导致R值略低,为0.0453。n我们进一步研究了计算化学的应用,以提供对CH键活化机理和在理解亲核硼基配体的反应性时,用计算来解决实验困难,反之亦然。最后,我们考虑了理论见解在三个非常具体的化学反应实验研究中的影响,从而说明了理论结果如何促进了进一步的实验研究:(i)铜(I)硼基配合物催化的醛缩合反应;(ii)钌催化的芳基叠氮化物的CH胺化反应,以及(iii)乙烯基碳炔络合物的锌还原反应。n本文介绍的概念和例子仅供非专业人士使用,尤其是实验人员使用。一起,theynillustrate可以通过实验和理论的丰硕结合而取得一些成就。

著录项

  • 来源
    《Accounts of Chemical Research》 |2010年第5期|p.602-611|共10页
  • 作者

    Zhenyang Lin;

  • 作者单位

    Department of Chemistry, The Hong Kong University of Science andTechnology, Clear Water Bay, Kowloon, Hong Kong;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:24:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号