首页> 外文期刊>Accounts of Chemical Research >Cofabrication: A Strategy for Building Multicomponent Microsystems
【24h】

Cofabrication: A Strategy for Building Multicomponent Microsystems

机译:合作制造:构建多组件微系统的策略

获取原文
获取原文并翻译 | 示例
       

摘要

Tnhis Account describes a strategy for fabricating multi-ncomponent microsystems in which the structures ofnessentially all of the components are formed in a single stepnof micromolding. This strategy, which we call “cofabrica-ntion”, is an alternative to multilayer microfabrication, innwhich multiple layers of components are sequentially alignedn(“registered”) and deposited on a substrate by photolithog-nraphy.nCofabrication has several characteristics that make it annespecially useful approach for building multicomponent microsystems. It rapidly and inexpensively generates correctly aligned com-nponents (for example, wires, heaters, magnetic field generators, optical waveguides, and microfluidic channels) over very largensurface areas. By avoiding registration, the technique does not impose on substrates the size limitations of common registrationsntools, such as steppers and contact aligners. We have demonstrated multicomponent microsystems with surface areas exceedingn100 cm2n, but in principle, device size is only limited by the requirements of generating the original master.nIn addition, cofabrication can serve as a low-cost strategy for building microsystems. The technique is amenable to a varietynof laboratory settings and uses fabrication tools that are less expensive than those used for multistep microfabrication. More-nover, the process requires only small amounts of solvent and photoresist, a costly chemical required for photolithography; in cofab-nrication, photoresist is applied and developed only once to produce a master, which is then used to produce multiple copies ofnmolds containing the microfluidic channels.nFrom a broad perspective, cofabrication represents a new processing paradigm in which the exterior (or shell) of the desirednstructures are produced before the interior (or core). This approach, generating the insulation or packaging structure first and inject-ning materials that provide function in channels in liquid phase, makes it possible to design and build microsystems with compo-nnent materials that cannot be easily manipulated conventionally (such as solid materials with low melting points, liquid metals,nliquid crystals, fused salts, foams, emulsions, gases, polymers, biomaterials, and fragile organics). Moreover, materials can be altered,nremoved, or replaced after the manufacturing stage. For example, cofabrication allows one to build devices in which a liquid flowsnthrough the device during use, or is replaced after use. Metal wires can be melted and reset by heating (in principle, repairing anbreak). This method leads to certain kinds of structures, such as integrated metallic wires with large cross-sectional areas or opti-ncal waveguides aligned in the same plane as microfluidic channels, that would be difficult or impossible to make with techniquesnsuch as sputter deposition or evaporation.nThis Account outlines the strategy of cofabrication and describes several applications. Specifically, we highlight cofabricatednsystems that combine microfluidics with (i) electrical wires for microheaters, electromagnets, and organic electrodes, (ii) fluidic opti-ncal components, such as optical waveguides, lenses, and light sources, (iii) gels for biological cell cultures, and (iv) droplets for com-npartmentalized chemical reactions, such as protein crystallization.
机译:Tnhis Account描述了一种制造多n组件微系统的策略,在该策略中,所有组件的结构实际上都在一个微成型步骤中形成。这种策略,我们称为“共晶化”,是多层微细加工的一种替代方法,即依次将多层组件对准(“套准”)并通过光刻技术将其沉积在基材上。构建多组件微系统的有用方法。它可以在非常大的表面区域上快速廉价地生成正确对齐的组件(例如,电线,加热器,磁场发生器,光波导和微流体通道)。通过避免套准,该技术不会在基板上施加普通套准工具(例如步进机和接触对准器)的尺寸限制。我们已经展示了表面积超过n100 cm2n的多组件微系统,但是原则上,设备尺寸仅受生成原始主系统的要求的限制。n此外,联合制造可以作为构建微系统的低成本策略。该技术适用于各种实验室环境,并且使用的制造工具比用于多步微制造的制造工具便宜。而且,该工艺仅需要少量的溶剂和光刻胶,这是光刻所需的昂贵化学药品。在协同制造中,光致抗蚀剂仅应用一次并显影一次以产生母版,然后将其用于生产包含微流体通道的多份模具。在内部(或核心)之前生产出所需结构的一部分。这种方法首先产生绝缘或包装结构,并在液相通道中提供功能,然后注入材料,这使得设计和构建包含常规难以操作的成分材料的微系统成为可能(例如固体材料,熔点,液态金属,非液晶,熔融盐,泡沫,乳液,气体,聚合物,生物材料和易碎有机物)。而且,可以在制造阶段之后更改,移除或替换材料。例如,共同制造允许人们建造一种设备,在使用过程中,液体流过该设备,或者在使用后被替换。金属线可以通过加热融化并复位(原则上修复断裂)。这种方法会导致某些类型的结构,例如具有大横截面积的集成金属线或与微流体通道在同一平面上对齐的光学波导,这些技术很难或不可能通过溅射沉积或蒸发等技术来制造。 n该帐户概述了联合制造的策略并描述了几种应用。具体而言,我们着重介绍将微流体与(i)用于微型加热器,电磁体和有机电极的电线相结合的协同系统,(ii)流体光学组件,例如光波导,透镜和光源,(iii)用于生物细胞的凝胶培养物,以及(iv)用于化学反应(例如蛋白质结晶)的小滴。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号