首页> 外文期刊>Accounts of Chemical Research >Role of the πσ* State in Molecular Photophysics
【24h】

Role of the πσ* State in Molecular Photophysics

机译:πσ*状态在分子光物理中的作用

获取原文
获取原文并翻译 | 示例
       

摘要

Photosynthesis, which depends on light-driven energy andnelectron transfer in assemblies of porphyrins, chloro-nphylls, and carotenoids, is just one example of the manyncomplex natural systems of photobiology. A fuller under-nstanding of the spectroscopy and photophysics of simple aro-nmatic molecules is central to elucidating photochemicalnprocesses in the more sophisticated assemblies of photobi-nology. Moreover, developing a better grasp of the photo-nphysics of simple aromatic molecules will also enhance ournability to create and improve practical applications in pho-ntochemical energy conversion, molecular nanophotonics, andnmolecular electronics. In this Account, we present a concertednexperimental and theoretical study of aromatic ethynes, aro-nmatic nitriles, and fluorinated benzenes, illustrating thenimportant roles that the low-lying πσ* state plays in the elec-ntronic relaxation of these aromatic compounds.nDiphenylacetylene, 4-dialkylaminobenzonitriles, 4-dialky-nlaminobenzethynes, and fluorinated benzenes exhibit fluo-nrescence that strongly quenches as the excitation energy isnincreased for gas-phase systems and at elevated temperatures in solution. Much of this interesting photophysical behaviorncan be attributed to the presence of a dark intermediate state that crosses the fluorescent ππ* state. Our quantum chem-nistry calculations, as well as time-resolved laser spectroscopies, indicate that this dark intermediate state is the πσ* statenthat arises from the promotion of an electron from the π orbital of the phenyl ring to the σ* orbital localized in the CtXngroup (where X is CH and N) or on the CsX group (where X is a halogen). These crossings not only lead to the strongnexcitation energy and temperature dependence of fluorescence but also induce highly interesting πσ*-mediated intramo-nlecular charge transfer in 4-dialkylaminobenzonitriles.
机译:光合作用取决于光驱动能量和卟啉,叶绿素和类胡萝卜素组装体中的电子转移,只是许多复杂的自然光生物学系统之一。对简单的芳香分子的光谱学和光物理的全面理解,对于阐明更复杂的光生物学组合中的光化学过程至关重要。此外,更好地掌握简单芳香分子的光物理性质还将增强我们在光化学能量转换,分子纳米光子学和分子电子学中创建和改进实际应用的能力。在本报告中,我们提供了对芳香族乙炔,芳族腈和氟代苯的协调的实验和理论研究,说明低位πσ*态在这些芳香族化合物的电子弛豫中起着重要的作用.nDiphenylethylene,4 -二烷基氨基苯甲腈,4-二烷基-nlaminobenzethynesnes和氟代苯表现出强烈的猝灭作用,因为气相系统和溶液中升高的激发能会使其猝灭。这种有趣的光物理行为大部分可以归因于存在穿过荧光ππ*状态的暗中间状态。我们的量子化学计算以及时间分辨的激光光谱表明,这种暗中间状态是πσ*状态,它是由电子从苯环的π轨道提升到局部原子的σ*轨道而产生的。 CtXn基团(其中X为CH和N)或CsX基团(其中X为卤素)。这些交叉不仅导致荧光的强激发能量和温度依赖性,而且还引起了4-二烷基氨基苯甲腈中非常有趣的由πσ*介导的分子内电荷转移。

著录项

  • 来源
    《Accounts of Chemical Research》 |2010年第4期|p.506-517|共12页
  • 作者单位

    †Steacie Institute for Molecular Science, National Research Council of Canada,Ottawa K1A 0R6, Canada and,‡Department of Chemistry and The Center forLaser and Optical Spectroscopy, The University of Akron,Akron, Ohio 44325-3601;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:24:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号