首页> 外文期刊>Accounts of Chemical Research >Bioinspired Materials for Controlling Stem Cell Fate
【24h】

Bioinspired Materials for Controlling Stem Cell Fate

机译:生物启发材料来控制干细胞命运

获取原文
获取原文并翻译 | 示例
       

摘要

Although researchers currently have limited abil-nity to mimic the natural stem cell microenvi-nronment, recent work at the interface of stem biologynand biomaterials science has demonstrated that con-ntrol over stem cell behavior with artificial microen-nvironments is quite advanced. Embryonic and adultnstem cells are potentially useful platforms for tissuenregeneration, cell-based therapeutics, and disease-nin-a-dish models for drug screening. The major chal-nlenge in this field is to reliably control stem cellnbehavior outside the body. Common biological con-ntrol schemes often ignore physicochemical parame-nters that materials scientists and engineers commonlynmanipulate, such as substrate topography andnmechanical and rheological properties. However, with appropriate attention to these parameters, researchers have designed novelnsynthetic microenvironments to control stem cell behavior in rather unnatural ways.nIn this Account, we review synthetic microenvironments that aim to overcome the limitations of natural niches rather than to mimicnthem. A biomimetic stem cell control strategy is often limited by an incomplete understanding of the complex signaling pathways thatndrive stem cell behavior from early embryogenesis to late adulthood. The stem cell extracellular environment presents a miscellany ofncompeting biological signals that keep the cell in a state of unstable equilibrium. Using synthetic polymers, researchers have designednsynthetic microenvironments with an uncluttered array of cell signals, both specific and nonspecific, that are motivated by rather thannmodeled after biology. These have proven useful in maintaining cell potency, studying asymmetric cell division, and controlling cellularndifferentiation.nWe discuss recent research that highlights important biomaterials properties for controlling stem cell behavior, as well as advancednprocesses for selecting those materials, such as combinatorial and high-throughput screening. Much of this work has utilized micro- andnnanoscale fabrication tools for controlling material properties and generating diversity in both two and three dimensions. Because of theirnease of synthesis and similarity to biological soft matter, hydrogels have become a biomaterial of choice for generating 3D microenvi-nronments. In presenting these efforts within the framework of synthetic biology, we anticipate that future researchers may exploit syn-nthetic polymers to create microenvironments that control stem cell behavior in clinically relevant ways.
机译:尽管目前研究人员模拟自然干细胞微环境的能力有限,但最近在干生物学和生物材料科学的界面上进行的研究表明,在人工微环境下控制干细胞行为的研究相当先进。胚胎和成体细胞可能是有用的平台,可用于组织再生,基于细胞的治疗以及药物筛选的疾病一碟式模型。该领域的主要挑战是可靠地控制体外的干细胞行为。常见的生物控制方案通常会忽略材料科学家和工程师通常操纵的物理化学参数,例如基材的形貌以及机械力学和流变学特性。然而,在适当注意这些参数的基础上,研究人员设计了新颖的合成微环境,以相当不自然的方式控制干细胞的行为。仿生干细胞控制策略通常受到对驱动干细胞行为从早期胚胎形成到成年后期的复杂信号通路的不完全了解所限制。干细胞的细胞外环境呈现出各种竞争性的生物信号,使细胞处于不稳定的平衡状态。研究人员使用合成聚合物设计了一种合成的微环境,该环境具有整齐的特定和非特定细胞信号阵列,这些信号是由生物学而不是建模引起的。这些已被证明可用于维持细胞效能,研究不对称细胞分裂和控制细胞分化。n我们讨论了最近的研究,该研究着重介绍了控制干细胞行为的重要生物材料特性,以及用于选择这些材料的先进工艺,例如组合和高通量筛选。这项工作大部分已利用微米级和纳米级制造工具来控制材料特性并在二维和三维上产生多样性。由于其易于合成且与生物软物质相似,水凝胶已成为生成3D微环境的首选生物材料。在合成生物学的框架内提出这些努力时,我们预计未来的研究人员可能会利用合成聚合物来创建微环境,从而以临床相关的方式控制干细胞的行为。

著录项

  • 来源
    《Accounts of Chemical Research》 |2010年第3期|p.419-428|共10页
  • 作者单位

    †David H. Koch Institute for Integrative Cancer Research,‡Harvard-Massachusetts Institute of Technology Division of Health Sciences andTechnology,§Department of Chemical Engineering, Massachusetts Institute ofTechnology, Cambridge, Massachusetts 02139,⊥Department of Medicine,Brigham and Women’s Hospital, Harvard Medical School, Boston,Massachusetts 02115,|Departments of Chemical Engineering and BiomedicalEngineering and Division of Pharmaceutics, The University of Texas at Austin,Austin, Texas 78712;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:24:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号