首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Alterations of Excitation–Contraction Coupling and Excitation Coupled Ca2+ Entry in Human Myotubes Carrying CAV3 Mutations Linked to Rippling Muscle Disease
【2h】

Alterations of Excitation–Contraction Coupling and Excitation Coupled Ca2+ Entry in Human Myotubes Carrying CAV3 Mutations Linked to Rippling Muscle Disease

机译:携带CAV3突变的人肌管中与励磁-收缩耦合和励磁耦合的Ca2 +进入相关的波动性肌肉疾病

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rippling muscle disease is caused by mutations in the gene encoding caveolin-3 (CAV3), the muscle-specific isoform of the scaffolding protein caveolin, a protein involved in the formation of caveolae. In healthy muscle, caveolin-3 is responsible for the formation of caveolae, which are highly organized sarcolemmal clusters influencing early muscle differentiation, signalling and Ca2+ homeostasis. In the present study we examined Ca2+ homeostasis and excitation–contraction (E-C) coupling in cultured myotubes derived from two patients with Rippling muscle disease with severe reduction in caveolin-3 expression; one patient harboured the heterozygous c.84C>A mutation while the other patient harbored a homozygous splice-site mutation (c.102+ 2T>C) affecting the splice donor site of intron 1 of the CAV3 gene. Our results show that cells from control and rippling muscle disease patients had similar resting [Ca2+]i and 4-chloro-m-cresol-induced Ca2+ release but reduced KCl-induced Ca2+ influx. Detailed analysis of the voltage-dependence of Ca2+ transients revealed a significant shift of Ca2+ release activation to higher depolarization levels in CAV3 mutated cells. High resolution immunofluorescence analysis by Total Internal Fluorescence microscopy supports the hypothesis that loss of caveolin-3 leads to microscopic disarrays in the colocalization of the voltage-sensing dihydropyridine receptor and the ryanodine receptor, thereby reducing the efficiency of excitation–contraction coupling. Hum Mutat 32:309–317, 2011. © 2011 Wiley-Liss, Inc.
机译:波纹肌疾病是由编码caveolin-3(CAV3)的基因突变引起的,cavolin-3是支架蛋白caveolin的肌肉特异性同工型,caveolin-3是参与caveolae形成的蛋白质。在健康的肌肉中,小窝蛋白3负责小窝的形成,小窝是高度组织化的肌膜簇,影响早期的肌肉分化,信号传导和Ca 2 + 稳态。在本研究中,我们研究了来自两名患有波纹肌病且伴有严重的Caveolin-3表达降低的患者的培养肌管中Ca 2 + 稳态和兴奋收缩(E-C)耦合。一名患者携带杂合子c.84C> A突变,而另一名患者携带纯合子剪接位点突变(c.102 + 2T> C),影响CAV3基因内含子1的剪接供体位点。我们的结果表明,对照和波纹状肌肉疾病患者的细胞具有相似的静息[Ca 2 + ] i和4-氯-间甲酚诱导的Ca 2 + 释放,但减少了KCl诱导的Ca 2 + 内流。对Ca 2 + 瞬态电压依赖性的详细分析表明,在CAV3突变的细胞中,Ca 2 + 释放激活向较高的去极化水平发生了显着变化。通过总内部荧光显微镜进行的高分辨率免疫荧光分析支持了以下假设,即小窝蛋白3的缺失会导致电压感应二氢吡啶受体和ryanodine受体共定位的微观混乱,从而降低了激发-收缩偶联的效率。 Hum Mutat 32:309–317,2011.©2011 Wiley-Liss,Inc.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号