首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >A generalised enzyme kinetic model for predicting the behaviour of complex biochemical systems
【2h】

A generalised enzyme kinetic model for predicting the behaviour of complex biochemical systems

机译:用于预测复杂生化系统行为的广义酶动力学模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

class="kwd-title">Keywords: Systems biology, Enzyme kinetics, ODE modelling, Biochemical networks, Quasi-steady state assumption class="head no_bottom_margin" id="idm139713898809520title">AbstractQuasi steady-state enzyme kinetic models are increasingly used in systems modelling. The Michaelis Menten model is popular due to its reduced parameter dimensionality, but its low-enzyme and irreversibility assumption may not always be valid in the in vivo context. Whilst the total quasi-steady state assumption (tQSSA) model eliminates the reactant stationary assumptions, its mathematical complexity is increased. Here, we propose the differential quasi-steady state approximation (dQSSA) kinetic model, which expresses the differential equations as a linear algebraic equation. It eliminates the reactant stationary assumptions of the Michaelis Menten model without increasing model dimensionality. The dQSSA was found to be easily adaptable for reversible enzyme kinetic systems with complex topologies and to predict behaviour consistent with mass action kinetics in silico. Additionally, the dQSSA was able to predict coenzyme inhibition in the reversible lactate dehydrogenase enzyme, which the Michaelis Menten model failed to do. Whilst the dQSSA does not account for the physical and thermodynamic interactions of all intermediate enzyme-substrate complex states, it is proposed to be suitable for modelling complex enzyme mediated biochemical systems. This is due to its simpler application, reduced parameter dimensionality and improved accuracy.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ kwd-title”>关键字:系统生物学,酶动力学,ODE建模,生化网络,拟稳态假设 class =在系统建模中,越来越多的准稳态酶动力学模型正在使用。“ head no_bottom_margin” id =“ idm139713898809520520title”> Michaelis Menten模型因其参数维数减少而受欢迎,但其低酶和不可逆性假设可能在体内并不总是有效的。虽然总准稳态假设(tQSSA)模型消除了反应物的平稳假设,但其数学复杂度却增加了。在此,我们提出了微分准稳态近似(dQSSA)动力学模型,该模型将微分方程表示为线性代数方程。它消除了Michaelis Menten模型的反应物平稳假设,而不增加模型维数。 dQSSA被发现很容易适应具有复杂拓扑结构的可逆酶动力学系统,并预测与计算机模拟质量动力学一致的行为。此外,dQSSA能够预测可逆乳酸脱氢酶中的辅酶抑制作用,这是Michaelis Menten模型无法做到的。尽管dQSSA并未考虑所有中间酶-底物复杂状态的物理和热力学相互作用,但它被认为适合于建模复杂的酶介导的生化系统。这是由于其更简单的应用,降低的参数尺寸和更高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号