首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Harnessing a methane‐fueled sediment‐free mixed microbial community for utilization of distributed sources of natural gas
【2h】

Harnessing a methane‐fueled sediment‐free mixed microbial community for utilization of distributed sources of natural gas

机译:利用甲烷燃料无沉淀物的混合微生物群落来利用分布式天然气

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Harnessing the metabolic potential of uncultured microbial communities is a compelling opportunity for the biotechnology industry, an approach that would vastly expand the portfolio of usable feedstocks. Methane is particularly promising because it is abundant and energy‐rich, yet the most efficient methane‐activating metabolic pathways involve mixed communities of anaerobic methanotrophic archaea and sulfate reducing bacteria. These communities oxidize methane at high catabolic efficiency and produce chemically reduced by‐products at a comparable rate and in near‐stoichiometric proportion to methane consumption. These reduced compounds can be used for feedstock and downstream chemical production, and at the production rates observed in situ they are an appealing, cost‐effective prospect. Notably, the microbial constituents responsible for this bioconversion are most prominent in select deep‐sea sediments, and while they can be kept active at surface pressures, they have not yet been cultured in the lab. In an industrial capacity, deep‐sea sediments could be periodically recovered and replenished, but the associated technical challenges and substantial costs make this an untenable approach for full‐scale operations. In this study, we present a novel method for incorporating methanotrophic communities into bioindustrial processes through abstraction onto low mass, easily transportable carbon cloth artificial substrates. Using Gulf of Mexico methane seep sediment as inoculum, optimal physicochemical parameters were established for methane‐oxidizing, sulfide‐generating mesocosm incubations. Metabolic activity required >∼40% seawater salinity, peaking at 100% salinity and 35 °C. Microbial communities were successfully transferred to a carbon cloth substrate, and rates of methane‐dependent sulfide production increased more than threefold per unit volume. Phylogenetic analyses indicated that carbon cloth‐based communities were substantially streamlined and were dominated by Desulfotomaculum geothermicum. Fluorescence in situ hybridization microscopy with carbon cloth fibers revealed a novel spatial arrangement of anaerobic methanotrophs and sulfate reducing bacteria suggestive of an electronic coupling enabled by the artificial substrate. This system: 1) enables a more targeted manipulation of methane‐activating microbial communities using a low‐mass and sediment‐free substrate; 2) holds promise for the simultaneous consumption of a strong greenhouse gas and the generation of usable downstream products; and 3) furthers the broader adoption of uncultured, mixed microbial communities for biotechnological use.
机译:利用未培养的微生物群落的代谢潜力,对于生物技术行业来说是一个引人注目的机会,这种方法将极大地扩展可用原料的范围。甲烷特别有希望,因为它丰富且能量丰富,但是最有效的甲烷活化代谢途径涉及厌氧甲烷营养古细菌和硫酸盐还原菌的混合群落。这些群落以高分解代谢效率氧化甲烷,并以与甲烷消耗量相当的速率和接近化学计量的比例产生化学还原的副产物。这些还原的化合物可用于原料和下游化学品的生产,以原位观察的生产率,它们是一种有吸引力的,具有成本效益的前景。值得注意的是,导致这种生物转化的微生物成分在某些深海沉积物中最为显着,尽管可以在表面压力下保持活性,但尚未在实验室中进行培养。以工业能力来说,深海沉积物可以定期回收和补充,但是相关的技术挑战和巨大的成本使这种方法无法进行全面运营。在这项研究中,我们提出了一种新颖的方法,可通过将甲烷富营养化群落纳入生物工业过程中,方法是将其提取到低质量,易于运输的碳布人工基材上。使用墨西哥湾的甲烷渗透沉淀物作为接种物,为甲烷氧化,硫化物产生的中观温育确定了最佳物理化学参数。代谢活性需要> 40%的海水盐度,在100%的盐度和35°C时达到峰值。微生物群落成功地转移到碳布基质上,甲烷相关硫化物的产生速率每单位体积增加了三倍以上。系统发育分析表明,基于碳布的群落基本上得到了简化,并被地热Desulfotomaculum所主导。碳布纤维的荧光原位杂交显微镜显示厌氧甲烷菌和硫酸盐还原细菌的新型空间排列,暗示了人工底物可以实现电子偶联。该系统:1)使用低质量和无沉淀物的底物,更有针对性地控制甲烷活化微生物群落; 2)承诺同时消耗强温室气体和产生可用的下游产品; 3)进一步促进将未经培养的混合微生物群落广泛用于生物技术用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号