首页> 美国卫生研究院文献>PLoS Clinical Trials >UV-Light Exposure of Insulin: Pharmaceutical Implications upon Covalent Insulin Dityrosine Dimerization and Disulphide Bond Photolysis
【2h】

UV-Light Exposure of Insulin: Pharmaceutical Implications upon Covalent Insulin Dityrosine Dimerization and Disulphide Bond Photolysis

机译:胰岛素的紫外线照射:共价胰岛素二酪氨酸二聚和二硫键光解的药学意义

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

In this work we report the effects of continuous UV-light (276 nm, ∼2.20 W.m−2) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin’s structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein structure. Structural damage includes insulin dimerization via dityrosine cross-linking or disulphide bond disruption, which affects the hormone’s structure and bioactivity.
机译:在这项工作中,我们报告了持续不断的紫外线(276 nm,〜2.20 W.m -2 )激发人胰岛素对其吸收和荧光性质,结构和功能的影响。溶液中肽激素的连续紫外线激发导致酪氨酸光产物二酪氨酸的逐步形成,酪氨酸光产物二酪氨酸是在酪氨酸自由基交联时形成的。吸光度,荧光发射和激发数据证实了二酪氨酸的形成,导致共价胰岛素二聚化。此外,胰岛素的紫外线激发引起二硫键断裂。近和远紫外-CD光谱表明,紫外线对胰岛素的诱导会导致二级和三级结构损失。在天然胰岛素中,A和B链通过两个二硫键连接在一起。这些键中任何一个的破坏都可能影响胰岛素的结构。紫外线诱导的结构变化会削弱其抗体结合能力和体外激素功能。在276 nm激发1.5和3.5 h后,豚鼠抗胰岛素抗体识别的胰岛素浓度分别降低了33.7%和62.1%。当人骨骼肌细胞与预紫外线照射的胰岛素在1.5小时内孵育时,其葡萄糖吸收减少61.7%。这项工作中提出的观察结果强调了保护胰岛素和其他药物免于紫外线照射的重要性,这与制药行业最相关。在其生产,包装,储存或给药阶段,可以将含有六聚体,二聚体和单体形式的胰岛素的几种药物制剂暴露于天然和人工紫外线。我们可以估计,直接将胰岛素长期暴露在阳光下以及工业中用于室内照明和紫外线消毒的普通光源足以诱发人胰岛素结构的不可逆变化。实验室实验中的常规荧光和吸收测量也可能引起蛋白质结构的变化。结构性损伤包括通过二酪氨酸交联或二硫键断裂引起的胰岛素二聚化,这会影响激素的结构和生物活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号